Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CAMECA Unveils News Semiconductor Metrology Tool

Cameca EX-300 LEXES metrology tool
Cameca EX-300 LEXES metrology tool

Abstract:
Versatile Metrology Tool for Front-End Process Control Of 22nm Technology Nodes and Beyond

CAMECA Unveils News Semiconductor Metrology Tool

Gennevillers, France | Posted on January 27th, 2011

CAMECA, a world leader in scientific instrumentation and metrology solutions for semiconductor labs and fabs, has unveiled the latest addition to its line of high-end metrology systems-the EX-300 metrology tool targeted for front-end process control of 22 nm technology nodes and beyond.

"CAMECA is very proud to introduce the EX-300," notes Dr. Michel Schuhmacher, CAMECA Vice President and Chief Technical Officer. "This highly versatile metrology tool benefits from CAMECA's 10-years of experience with LEXES (Low-energy Electron induced X-ray Emission Spectrometry) technology."

"We are convinced that the EX-300 will become the metrology tool of choice for semiconductor fabs integrating new challenging processes," adds Dr. Schuhmacher. "The EX-300 offers unique capabilities for front-end compositional control at and near the surface. The instrument targets front-end process control for 22nm technology nodes and performs metrology of patterned wafers down to 30x30µm."

The EX-300 utilizes LEXES, a unique surface probing technique pioneered by CAMECA. The technology is now well-established for addressing challenges in elemental composition, thickness determination and dopant dosimetry. With dozens of CAMECA LEXFAB 300 instruments currently installed at the top-ten semiconductor fabrication facilities worldwide, the technology is considered the standard for semiconductor R&D and ramping-up phases at the most advanced nodes as well as for high-volume production monitoring.

CAMECA optimized the performance of the EX-300 for challenging High K Metal Gate (HKMG), epitaxial layers such as Boron in Silcon Germanium(B:SiGe) and shallow implants, fulfilling requirements of both rapid device development and high-yield mass production. In addition, the instrument is designed to deliver enhanced long-term stability and minimize mean time to repair (MTTR).

####

About CAMECA
CAMECA has more than 50 years of experience in the design, manufacture and servicing of scientific instruments for material micro- and nano-analysis. Since pioneering Secondary Ion Mass Spectrometry (SIMS) and Electron Probe Microanalysis (EPMA) instrumentation in the 1950s, CAMECA has remained an undisputed world leader, while achieving numerous breakthrough innovations in such complementary techniques as LEXES and Atom Probe Tomography.

More recently CAMECA has evolved successfully from a provider of scientific instrumentation for the international research community to a provider of metrology solutions for the semiconductor industry. Headquartered near Paris, CAMECA has subsidiaries in China, Germany, Japan, Korea, Taiwan and the United States along with a global network of agents. Acquired in 2007 by AMETEK, Inc, a leading global manufacturer of electronic instrument and electromechanical products, CAMECA is now a unit of AMETEK’s Materials Analysis Division.

For more information, please click here

Contacts:
Marion Chopin
+33 (1) 43 34 62 00

Copyright © CAMECA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Chip Technology

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Memory Technology

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

A single-atom magnet breaks new ground for future data storage April 15th, 2016

Ames Laboratory physicists discover new material that may speed computing April 12th, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Physicists build 'electronic synapses' for neural networks April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Tools

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic