Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CAMECA Unveils News Semiconductor Metrology Tool

Cameca EX-300 LEXES metrology tool
Cameca EX-300 LEXES metrology tool

Abstract:
Versatile Metrology Tool for Front-End Process Control Of 22nm Technology Nodes and Beyond

CAMECA Unveils News Semiconductor Metrology Tool

Gennevillers, France | Posted on January 27th, 2011

CAMECA, a world leader in scientific instrumentation and metrology solutions for semiconductor labs and fabs, has unveiled the latest addition to its line of high-end metrology systems-the EX-300 metrology tool targeted for front-end process control of 22 nm technology nodes and beyond.

"CAMECA is very proud to introduce the EX-300," notes Dr. Michel Schuhmacher, CAMECA Vice President and Chief Technical Officer. "This highly versatile metrology tool benefits from CAMECA's 10-years of experience with LEXES (Low-energy Electron induced X-ray Emission Spectrometry) technology."

"We are convinced that the EX-300 will become the metrology tool of choice for semiconductor fabs integrating new challenging processes," adds Dr. Schuhmacher. "The EX-300 offers unique capabilities for front-end compositional control at and near the surface. The instrument targets front-end process control for 22nm technology nodes and performs metrology of patterned wafers down to 30x30µm."

The EX-300 utilizes LEXES, a unique surface probing technique pioneered by CAMECA. The technology is now well-established for addressing challenges in elemental composition, thickness determination and dopant dosimetry. With dozens of CAMECA LEXFAB 300 instruments currently installed at the top-ten semiconductor fabrication facilities worldwide, the technology is considered the standard for semiconductor R&D and ramping-up phases at the most advanced nodes as well as for high-volume production monitoring.

CAMECA optimized the performance of the EX-300 for challenging High K Metal Gate (HKMG), epitaxial layers such as Boron in Silcon Germanium(B:SiGe) and shallow implants, fulfilling requirements of both rapid device development and high-yield mass production. In addition, the instrument is designed to deliver enhanced long-term stability and minimize mean time to repair (MTTR).

####

About CAMECA
CAMECA has more than 50 years of experience in the design, manufacture and servicing of scientific instruments for material micro- and nano-analysis. Since pioneering Secondary Ion Mass Spectrometry (SIMS) and Electron Probe Microanalysis (EPMA) instrumentation in the 1950s, CAMECA has remained an undisputed world leader, while achieving numerous breakthrough innovations in such complementary techniques as LEXES and Atom Probe Tomography.

More recently CAMECA has evolved successfully from a provider of scientific instrumentation for the international research community to a provider of metrology solutions for the semiconductor industry. Headquartered near Paris, CAMECA has subsidiaries in China, Germany, Japan, Korea, Taiwan and the United States along with a global network of agents. Acquired in 2007 by AMETEK, Inc, a leading global manufacturer of electronic instrument and electromechanical products, CAMECA is now a unit of AMETEK’s Materials Analysis Division.

For more information, please click here

Contacts:
Marion Chopin
+33 (1) 43 34 62 00

Copyright © CAMECA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Chip Technology

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Nanoelectronics

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

UCR researchers discover new method to dissipate heat in electronic devices: By modulating the flow of phonons through semiconductor nanowires, engineers can create smaller and faster devices November 13th, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Tools

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Controlled electron pulses November 30th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

News from Quorum: The Agricultural Research Service of the USDA uses a Quorum Cryo-SEM preparation system for the study of mites, ticks and other soft bodied organisms November 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project