Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CAMECA Unveils News Semiconductor Metrology Tool

Cameca EX-300 LEXES metrology tool
Cameca EX-300 LEXES metrology tool

Abstract:
Versatile Metrology Tool for Front-End Process Control Of 22nm Technology Nodes and Beyond

CAMECA Unveils News Semiconductor Metrology Tool

Gennevillers, France | Posted on January 27th, 2011

CAMECA, a world leader in scientific instrumentation and metrology solutions for semiconductor labs and fabs, has unveiled the latest addition to its line of high-end metrology systems-the EX-300 metrology tool targeted for front-end process control of 22 nm technology nodes and beyond.

"CAMECA is very proud to introduce the EX-300," notes Dr. Michel Schuhmacher, CAMECA Vice President and Chief Technical Officer. "This highly versatile metrology tool benefits from CAMECA's 10-years of experience with LEXES (Low-energy Electron induced X-ray Emission Spectrometry) technology."

"We are convinced that the EX-300 will become the metrology tool of choice for semiconductor fabs integrating new challenging processes," adds Dr. Schuhmacher. "The EX-300 offers unique capabilities for front-end compositional control at and near the surface. The instrument targets front-end process control for 22nm technology nodes and performs metrology of patterned wafers down to 30x30µm."

The EX-300 utilizes LEXES, a unique surface probing technique pioneered by CAMECA. The technology is now well-established for addressing challenges in elemental composition, thickness determination and dopant dosimetry. With dozens of CAMECA LEXFAB 300 instruments currently installed at the top-ten semiconductor fabrication facilities worldwide, the technology is considered the standard for semiconductor R&D and ramping-up phases at the most advanced nodes as well as for high-volume production monitoring.

CAMECA optimized the performance of the EX-300 for challenging High K Metal Gate (HKMG), epitaxial layers such as Boron in Silcon Germanium(B:SiGe) and shallow implants, fulfilling requirements of both rapid device development and high-yield mass production. In addition, the instrument is designed to deliver enhanced long-term stability and minimize mean time to repair (MTTR).

####

About CAMECA
CAMECA has more than 50 years of experience in the design, manufacture and servicing of scientific instruments for material micro- and nano-analysis. Since pioneering Secondary Ion Mass Spectrometry (SIMS) and Electron Probe Microanalysis (EPMA) instrumentation in the 1950s, CAMECA has remained an undisputed world leader, while achieving numerous breakthrough innovations in such complementary techniques as LEXES and Atom Probe Tomography.

More recently CAMECA has evolved successfully from a provider of scientific instrumentation for the international research community to a provider of metrology solutions for the semiconductor industry. Headquartered near Paris, CAMECA has subsidiaries in China, Germany, Japan, Korea, Taiwan and the United States along with a global network of agents. Acquired in 2007 by AMETEK, Inc, a leading global manufacturer of electronic instrument and electromechanical products, CAMECA is now a unit of AMETEK’s Materials Analysis Division.

For more information, please click here

Contacts:
Marion Chopin
+33 (1) 43 34 62 00

Copyright © CAMECA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project