Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Squeezed Through too Small a Hole

Transparent windows are opened in optically thick metallic films perforated with subwavelength holes by adsorbing a thin layer of molecules at the surface. Counterintuitively, transmission occurs at wavelengths at which the molecular layer absorbs strongly (in this case at 700 nm), as revealed by transmission spectra of the hole array without (black curve) and with adsorbed molecules (red).
Transparent windows are opened in optically thick metallic films perforated with subwavelength holes by adsorbing a thin layer of molecules at the surface. Counterintuitively, transmission occurs at wavelengths at which the molecular layer absorbs strongly (in this case at 700 nm), as revealed by transmission spectra of the hole array without (black curve) and with adsorbed molecules (red).

Abstract:
Photon-plasmon coupling: Dye guides light through perforated metal foil

Squeezed Through too Small a Hole

Weinheim, Germany | Posted on January 27th, 2011

Just as photons are bundles of light energy, plasmons are energy packets of plasma oscillations—oscillations of the electron density in a solid body, which are known as surface plasmons when occurring at a metal interface. Surface plasmons introduce new possibilities for the manipulation and transmission of light for applications in a variety of areas, from modern data processing to biomedical sensing. In the journal Angewandte Chemie, Thomas W. Ebbesen, James A. Hutchison, and a team from the University of Strasbourg (France) introduce an interesting new effect based on the coupling of photons and plasmons: dye molecules help light pass through holes in metal foils that are so small that conventional theory predicts the light should not actually be able to pass through at all.

According to classical aperture theory, light should not be able to pass through tiny holes when the diameter is significantly smaller than the wavelength of the light. However, as reported by Ebbesen's group over a decade ago, light transmission can be much higher than predicted for regular arrays of holes owing to the involvement of surface plasmons. In essence, light is converted into surface plasmons, and in this coupled state the photons can pass though the holes to the other side of the metal as plasmons. They can then uncouple and reappear as light.

The French team has now described another phenomenon: if dye molecules are placed directly on the perforated metal surface, they significantly increase its transparence. Contrary to expectation, the additional windows of transparency can occur at wavelengths that are strongly absorbed by the molecules. Interestingly, this also occurs if the arrangement of holes in the foil is irregular; even a single hole is enough.

The researchers propose that two complementary effects are at play. On one hand, the dye molecules in the holes generate a large index variation in the hole favoring the transmission near the absorption band. On the other, the dye molecule generates a kind of "mirror image" of its electric dipole in the metal's free electron plasma, and the dipole and mirror-image dipole interact. If the molecule then absorbs light, it is not re-emitted; instead, the light energy is completely transferred to the metal surface, where it couples with surface plasmons helping the transmission process. This combination enables the light to pass efficiently to the other side of the metal foil.

This discovery represents a new approach for making perforated metal films with tailored transmission of visible light by simply applying a dye that absorbs light with the desired wavelength, which would have application in solar energy technology, filters, and sensing. That the transient excited states of molecules have absorption properties that are very different to their ground state adds a further dynamic dimension to these films, with all-optical, ultra-fast switches another possible application.

Author: Thomas W. Ebbesen, Université de Strasbourg (France), www-isis.u-strasbg.fr/nano/start

Title: Absorption-Induced Transparency

Angewandte Chemie International Edition, Permalink dx.doi.org/10.1002/anie.201006019

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Possible Futures

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Sensors

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Discoveries

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Announcements

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Biosensors: Distance makes the signal grow stronger March 1st, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

Photonics/Optics/Lasers

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Research partnerships

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project