Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Squeezed Through too Small a Hole

Transparent windows are opened in optically thick metallic films perforated with subwavelength holes by adsorbing a thin layer of molecules at the surface. Counterintuitively, transmission occurs at wavelengths at which the molecular layer absorbs strongly (in this case at 700 nm), as revealed by transmission spectra of the hole array without (black curve) and with adsorbed molecules (red).
Transparent windows are opened in optically thick metallic films perforated with subwavelength holes by adsorbing a thin layer of molecules at the surface. Counterintuitively, transmission occurs at wavelengths at which the molecular layer absorbs strongly (in this case at 700 nm), as revealed by transmission spectra of the hole array without (black curve) and with adsorbed molecules (red).

Abstract:
Photon-plasmon coupling: Dye guides light through perforated metal foil

Squeezed Through too Small a Hole

Weinheim, Germany | Posted on January 27th, 2011

Just as photons are bundles of light energy, plasmons are energy packets of plasma oscillations—oscillations of the electron density in a solid body, which are known as surface plasmons when occurring at a metal interface. Surface plasmons introduce new possibilities for the manipulation and transmission of light for applications in a variety of areas, from modern data processing to biomedical sensing. In the journal Angewandte Chemie, Thomas W. Ebbesen, James A. Hutchison, and a team from the University of Strasbourg (France) introduce an interesting new effect based on the coupling of photons and plasmons: dye molecules help light pass through holes in metal foils that are so small that conventional theory predicts the light should not actually be able to pass through at all.

According to classical aperture theory, light should not be able to pass through tiny holes when the diameter is significantly smaller than the wavelength of the light. However, as reported by Ebbesen's group over a decade ago, light transmission can be much higher than predicted for regular arrays of holes owing to the involvement of surface plasmons. In essence, light is converted into surface plasmons, and in this coupled state the photons can pass though the holes to the other side of the metal as plasmons. They can then uncouple and reappear as light.

The French team has now described another phenomenon: if dye molecules are placed directly on the perforated metal surface, they significantly increase its transparence. Contrary to expectation, the additional windows of transparency can occur at wavelengths that are strongly absorbed by the molecules. Interestingly, this also occurs if the arrangement of holes in the foil is irregular; even a single hole is enough.

The researchers propose that two complementary effects are at play. On one hand, the dye molecules in the holes generate a large index variation in the hole favoring the transmission near the absorption band. On the other, the dye molecule generates a kind of "mirror image" of its electric dipole in the metal's free electron plasma, and the dipole and mirror-image dipole interact. If the molecule then absorbs light, it is not re-emitted; instead, the light energy is completely transferred to the metal surface, where it couples with surface plasmons helping the transmission process. This combination enables the light to pass efficiently to the other side of the metal foil.

This discovery represents a new approach for making perforated metal films with tailored transmission of visible light by simply applying a dye that absorbs light with the desired wavelength, which would have application in solar energy technology, filters, and sensing. That the transient excited states of molecules have absorption properties that are very different to their ground state adds a further dynamic dimension to these films, with all-optical, ultra-fast switches another possible application.

Author: Thomas W. Ebbesen, Université de Strasbourg (France), www-isis.u-strasbg.fr/nano/start

Title: Absorption-Induced Transparency

Angewandte Chemie International Edition, Permalink dx.doi.org/10.1002/anie.201006019

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

BSA Distinguished Lecture Tuesday, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' September 23rd, 2014

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Sensors

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Nanoscience makes your wine better September 17th, 2014

Discoveries

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Announcements

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Photonics/Optics/Lasers

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Research partnerships

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE