Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ovarian Cancer: Study Suggests New Treatment Option Could Capture Free-Floating Cancer Cells to Reduce Metastasis

Schematic of magnetic nanoparticle treatment. Schematic shows how fluids containing ovarian cancer cells could be removed from the body, treated with magnetic nanoparticles to remove the cells, then returned to the body. (Courtesy of Ken Scarberry)
Schematic of magnetic nanoparticle treatment. Schematic shows how fluids containing ovarian cancer cells could be removed from the body, treated with magnetic nanoparticles to remove the cells, then returned to the body. (Courtesy of Ken Scarberry)

Abstract:
A paper published in the January issue of the journal Nanomedicine could provide the foundation for a new ovarian cancer treatment option - one that would use an outside-the-body filtration device to remove a large portion of the free-floating cancer cells that often create secondary tumors.

by John Toon

Ovarian Cancer: Study Suggests New Treatment Option Could Capture Free-Floating Cancer Cells to Reduce Metastasis

Atlanta, GA | Posted on January 27th, 2011

Researchers at the Georgia Institute of Technology have formed a startup company and are working with a medical device firm to design a prototype treatment system that would use magnetic nanoparticles engineered to capture cancer cells. Added to fluids removed from a patient's abdomen, the magnetic nanoparticles would latch onto the free-floating cancer cells, allowing both the nanoparticles and cancer cells to be removed by magnetic filters before the fluids are returned to the patient's body.

In mice with free-floating ovarian cancer cells, a single treatment with an early prototype of the nanoparticle-magnetic filtration system captured enough of the cancer cells that the treated mice lived nearly a third longer than untreated ones. The researchers expect multiple treatments to extend the longevity benefit, though additional research will be needed to document that - and determine the best treatment options.

"Almost no one dies from primary ovarian cancer," said John McDonald, a professor in Georgia Tech's School of Biology and chief research scientist of Atlanta's Ovarian Cancer Institute. "You can remove the primary cancer, but the problem is metastasis. A good deal of the metastasis in ovarian cancer comes from cancer cells sloughing off into the abdominal cavity and spreading the disease that way."

The removal system being developed by McDonald and postdoctoral fellow Ken Scarberry - who is also CEO of startup company Sub-Micro - should slow tumor progression in humans. It may reduce the number of free-floating cancer cells enough that other treatments, and the body's own immune system, could keep the disease under control.

"If you can reduce metastasis, you can improve the lifespan of the person with the disease and get a better chance of treating it effectively," said McDonald. "One goal is to make cancer a chronic disease that can be effectively treated over an extended period of time. If we can't cure it, perhaps we can help people to live with it."

Earlier in vitro studies published by the authors of the Nanomedicine paper showed that the magnetic nanoparticles could selectively remove human ovarian cancer cells from ascites fluid, which builds up in the peritoneal cavities of ovarian cancer patients. The nanoparticles are engineered with ligands that allow them to selectively attach to cancer cells.

The researchers believe that treating fluid removed from the body avoids potential toxicity problems that could result from introducing the nanoparticles into the body, though further studies are needed to confirm that the treatment would have no adverse effects.

The recently reported study in Nanomedicine used three sets of female mice to study the benefit of the nanoparticle-magnetic filtration system. Each mouse was injected with approximately 500,000 murine ovarian cancer cells, which multiply rapidly - each cell doubling within approximately 15 hours.

In the experimental group, the researchers - who included research scientist Roman Mezencev - removed fluid from the abdomens of the mice immediately after injection of the cancer cells. They then added the magnetic nanoparticles to the fluid, allowed them to mix, then magnetically removed the nanoparticles along with the attached cancer cells before returning the fluid. The steps were repeated six times for each mouse.

One control group received no treatment at all, while a second control group underwent the same treatment as the experimental group - but without the magnetic nanoparticles. Mice in the two control groups survived a median of 37 days, while the treated mice lived 12 days longer - a 32 percent increase in longevity.

Though much more research must be done before the technique can be tested in humans, McDonald and Scarberry envision a system very similar to what kidney dialysis patients now use, but with a buffer solution circulated through the peritoneal cavity to pick up the cancer cells.

"What we are developing is akin to hemofiltration or peritoneal dialysis in which the patient could come into a clinic and be hooked up to the device a couple of times a week," said Scarberry. "The treatment is not heavily invasive, so it could be repeated often."

The new treatment could be used in conjunction with existing chemotherapy and radiation. Reducing the number of free-floating cancer cells could allow a reduction in chemotherapy, which often has debilitating side effects, Scarberry said. The new treatment system could be used to capture spilled cancer cells immediately after surgery on a primary tumor.

The researchers hope to have a prototype circulation and filtration device ready for testing within three years. After that will come studies into the best treatment regimen, examining such issues as the number of magnetic nanoparticles to use, the number of treatments and treatment spacing. If those are successful, the company will work with the FDA to design human clinical trials.

The researchers also studying how their magnetic nanoparticles could be engineered to capture ovarian cancer stem cells, which are not affected by existing chemotherapy. Removing those cells could help eliminate a potent source of new cancer cells.

The research has been supported by the Georgia Research Alliance (GRA), the Ovarian Cancer Institute, the Robinson Family Foundation and the Deborah Nash Harris Endowment. A member of Georgia Tech's ATDC startup accelerator program and a GRA VentureLab company, Sub-Micro has also raised private funding to support its prototype development.

Challenges ahead include ensuring that nanoparticles cannot bypass the filtration system to enter the body, and controlling the risk of infection caused by opening the peritoneal cavity.

Beyond cancer, the researchers believe their approach could be useful for treating other diseases in which a reduction in circulating cancer cells or virus particles could be useful. Using magnetic nanoparticles engineered to capture HIV could help reduce viral content in the bloodstream, for instance.

"A technology like this has many different possibilities," said Scarberry. "We are currently developing the technology to control the metastatic spread of ovarian cancer, but once we have a device that can efficiently and effectively isolate cancer cells from circulating fluids, including blood, we would have other opportunities."

####

For more information, please click here

Contacts:
Media Relations Contacts:
John Toon
404-894-6986

or
Abby Robinson
404-385-3364

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Investments/IPO's/Splits

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 August 12th, 2014

Aspen Aerogels, Inc. to Present at Canaccord Genuity 34th Annual Growth Conference August 11th, 2014

Harris & Harris Group Reports Financial Statements as of June 30, 2014 August 10th, 2014

Nanomedicine

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Announcements

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE