Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Method prints nanostructures using hard pen tips floating on soft polymer springs

Abstract:
Northwestern University researchers have developed a new technique for rapidly prototyping nanoscale devices and structures that is so inexpensive the "print head" can be thrown away when done.

Method prints nanostructures using hard pen tips floating on soft polymer springs

Evanston, IL | Posted on January 26th, 2011

Hard-tip, soft-spring lithography (HSL) rolls into one method the best of scanning-probe lithography -- high resolution -- and the best of polymer pen lithography -- low cost and easy implementation.

HSL could be used in the areas of electronics (electronic circuits), medical diagnostics (gene chips and arrays of biomolecules) and pharmaceuticals (arrays for screening drug candidates), among others.

To demonstrate the method's capabilities, the researchers duplicated the pyramid on the U.S. one-dollar bill and the surrounding words approximately 19,000 times at 855 million dots per square inch. Each image consists of 6,982 dots. (They reproduced a bitmap representation of the pyramid, including the "Eye of Providence.") This exercise highlights the sub-50-nanometer resolution and the scalability of the method.

The results will be published Jan. 27 by the journal Nature.

"Hard-tip, soft-spring lithography is to scanning-probe lithography what the disposable razor is to the razor industry," said Chad A. Mirkin, the paper's senior author. "This is a major step forward in the realization of desktop fabrication that will allow researchers in academia and industry to create and study nanostructure prototypes on the fly."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology.

Micro- and nanolithographic techniques are used to create patterns and build surface architectures of materials on a small scale.

Scanning probe lithography, with its high resolution and registration accuracy, currently is a popular method for building nanostructures. The method is, however, difficult to scale up and produce multiple copies of a device or structure at low cost.

Scanning probe lithographies typically rely on the use of cantilevers as the printing device components. Cantilevers are microscopic levers with tips, typically used to deposit materials on surfaces in a printing experiment. They are fragile, expensive, cumbersome and difficult to implement in an array-based experiment.

"Scaling cantilever-based architectures at low cost is not trivial and often leads to devices that are difficult to operate and limited with respect to the scope of application," Mirkin said.

Hard-tip, soft-spring lithography uses a soft polymer backing that supports sharp silicon tips as its "print head." The spring polymer backing allows all of the tips to come in contact with the surface in a uniform manner and eliminates the need to use cantilevers. Essentially, hard tips are floating on soft polymeric springs, allowing either materials or energy to be delivered to a surface.

HSL offers a method that quickly and inexpensively produces patterns of high quality and with high resolution and density. The prototype arrays containing 4,750 tips can be fabricated for the cost of a single cantilever-based tip and made in mass, Mirkin said.

Mirkin and his team demonstrated an array of 4,750 ultra-sharp silicon tips aligned over an area of one square centimeter, with larger arrays possible. Patterns of features with sub-50-nanometer resolution can be made with feature size controlled by tip contact time with the substrate.

They produced patterns "writing" with molecules and showed that as the tips push against the substrate the flexible backing compresses, indicating the tips are in contact with the surface and writing is occurring. (The silicon tips do not deform under pressure.)

"Eventually we should be able to build arrays with millions of pens, where each pen is independently actuated," Mirkin said.

The researchers also demonstrated the ability to use hard-tip, soft-spring lithography to transfer mechanical and electrical energy to a surface.

The U.S. Air Force Office of Scientific Research, the U.S. Defense Advanced Research Projects Agency and the National Science Foundation supported the research.

The paper is titled "Hard-tip, soft-spring lithography." In addition to Mirkin, other authors are Wooyoung Shim, Adam B. Braunschweig, Xing Liao, Jinan Chai, Jong Kuk Lim and Gengfeng Zheng, from Northwestern.

####

For more information, please click here

Contacts:
MEDIA CONTACT:
Megan Fellman
(847) 491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Possible Futures

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Nanomedicine

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanoelectronics

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Announcements

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Tools

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Metamaterial: Mail armor inspires physicists: KIT researchers reverse hall coefficient -- medieval mail armor inspired development of metamaterial with novel properties February 15th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotechnology

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Cedars-Sinai, UCLA Scientists Use New ‘Blood Biopsies’ With Experimental Device to Speed Cancer Diagnosis and Predict Disease Spread: Leading-Edge Research Is Part of National Cancer Moonshot Initiative February 13th, 2017

Nanobiotix appoints senior executive from pharmaceutical industry, as Chief Operating Officer: Oncology industry veteran to oversee operations and product commercialization February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project