Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Method prints nanostructures using hard pen tips floating on soft polymer springs

Abstract:
Northwestern University researchers have developed a new technique for rapidly prototyping nanoscale devices and structures that is so inexpensive the "print head" can be thrown away when done.

Method prints nanostructures using hard pen tips floating on soft polymer springs

Evanston, IL | Posted on January 26th, 2011

Hard-tip, soft-spring lithography (HSL) rolls into one method the best of scanning-probe lithography -- high resolution -- and the best of polymer pen lithography -- low cost and easy implementation.

HSL could be used in the areas of electronics (electronic circuits), medical diagnostics (gene chips and arrays of biomolecules) and pharmaceuticals (arrays for screening drug candidates), among others.

To demonstrate the method's capabilities, the researchers duplicated the pyramid on the U.S. one-dollar bill and the surrounding words approximately 19,000 times at 855 million dots per square inch. Each image consists of 6,982 dots. (They reproduced a bitmap representation of the pyramid, including the "Eye of Providence.") This exercise highlights the sub-50-nanometer resolution and the scalability of the method.

The results will be published Jan. 27 by the journal Nature.

"Hard-tip, soft-spring lithography is to scanning-probe lithography what the disposable razor is to the razor industry," said Chad A. Mirkin, the paper's senior author. "This is a major step forward in the realization of desktop fabrication that will allow researchers in academia and industry to create and study nanostructure prototypes on the fly."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering and director of Northwestern's International Institute for Nanotechnology.

Micro- and nanolithographic techniques are used to create patterns and build surface architectures of materials on a small scale.

Scanning probe lithography, with its high resolution and registration accuracy, currently is a popular method for building nanostructures. The method is, however, difficult to scale up and produce multiple copies of a device or structure at low cost.

Scanning probe lithographies typically rely on the use of cantilevers as the printing device components. Cantilevers are microscopic levers with tips, typically used to deposit materials on surfaces in a printing experiment. They are fragile, expensive, cumbersome and difficult to implement in an array-based experiment.

"Scaling cantilever-based architectures at low cost is not trivial and often leads to devices that are difficult to operate and limited with respect to the scope of application," Mirkin said.

Hard-tip, soft-spring lithography uses a soft polymer backing that supports sharp silicon tips as its "print head." The spring polymer backing allows all of the tips to come in contact with the surface in a uniform manner and eliminates the need to use cantilevers. Essentially, hard tips are floating on soft polymeric springs, allowing either materials or energy to be delivered to a surface.

HSL offers a method that quickly and inexpensively produces patterns of high quality and with high resolution and density. The prototype arrays containing 4,750 tips can be fabricated for the cost of a single cantilever-based tip and made in mass, Mirkin said.

Mirkin and his team demonstrated an array of 4,750 ultra-sharp silicon tips aligned over an area of one square centimeter, with larger arrays possible. Patterns of features with sub-50-nanometer resolution can be made with feature size controlled by tip contact time with the substrate.

They produced patterns "writing" with molecules and showed that as the tips push against the substrate the flexible backing compresses, indicating the tips are in contact with the surface and writing is occurring. (The silicon tips do not deform under pressure.)

"Eventually we should be able to build arrays with millions of pens, where each pen is independently actuated," Mirkin said.

The researchers also demonstrated the ability to use hard-tip, soft-spring lithography to transfer mechanical and electrical energy to a surface.

The U.S. Air Force Office of Scientific Research, the U.S. Defense Advanced Research Projects Agency and the National Science Foundation supported the research.

The paper is titled "Hard-tip, soft-spring lithography." In addition to Mirkin, other authors are Wooyoung Shim, Adam B. Braunschweig, Xing Liao, Jinan Chai, Jong Kuk Lim and Gengfeng Zheng, from Northwestern.

####

For more information, please click here

Contacts:
MEDIA CONTACT:
Megan Fellman
(847) 491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Possible Futures

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Molecular Machines

Rice University's nanosubs gain better fluorescent properties for tracking June 17th, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Nanomedicine

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Tools

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanobiotechnology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic