Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Breakthrough in low temperature growth of carbon nanotubes

Abstract:
Researchers at the University of Surrey have discovered a way to grow high-quality carbon nanotubes over large areas at substrate temperatures below 350ēC, according to findings published this month in Carbon journal.

Breakthrough in low temperature growth of carbon nanotubes

UK | Posted on January 24th, 2011

This breakthrough by experts in the University's Advanced Technology Institute means that lowering the substrate temperature below 400ēC would make this technology compatible with CMOS (a technology for constructing integrated circuits) and suitable for large area substrates.

As a result potential applications of carbon nanotubes - ranging from interconnectors for integrated circuits, solar cell electrodes, supercapacitors, electrodes for batteries and fuel cells to nano-composite materials for high strength materials in body armour, aircraft wings, vehicle chassis and stealth materials - would become feasible and affordable if the growth temperature of the substrates were to be reduced from its current 700ēC, the University of Surrey researchers said.

Carbon nanotubes are rolled up sheets of honeycomb-structured carbon atoms that are typically ten thousandth the width of a human hair or hundred thousandth of a millimetre in diameter. The single or multi-walled carbon nanotube structures have amazing electronic properties with conductivity better than any other known single element material including copper, thermal conductivity better than diamond, and extraordinary mechanical strength surpassing that of high tensile steel.

The breakthrough reported by Professor Ravi Silva's group at the University of Surrey allows researchers to couple plasma energy more efficiently to the catalyst particles used to grow carbon nanotubes. The researchers have demonstrated that high-quality carbon nanotubes can be grown controllably, reliably and over large areas while maintaining the device substrates at low temperatures.

Dr Vlad Stolojan, a key researcher and author of the work published in Carbon, explained the technology used. "Currently the metallic interconnects based on the metal copper used in integrated circuits suffer from poor electrical conduction and, the smaller they get in diameter, the more resistive they become. In addition to the electromigration issues, they dissipate so much heat energy that they can damage the surrounding devices. With our innovative technology, using a top-down heating methodology, we can precisely grow carbon nanotubes within interconnect vias at CMOS compatible temperatures."

The revolutionary technology developed with colleagues from the Advanced Technology Institute spin-out company, Surrey NanoSystems, has demonstrated growth of carbon nanotubes which have similar properties to those obtained at temperatures of 700ēC, over 4" wafers, while maintaining the substrate below 350ēC. "The system we have designed provides energy from the top via an infrared lamp array, whilst having several functional layers with carefully designed thicknesses which reflect this heat and/or act as thermal barriers for the substrate. The substrate itself sits on a water-cooled holder, to further protect it from harmful heating," Dr Stolojan added.

Speaking about the discovery, Professor Silva said: "This radical and novel approach to carbon nanotube growth combines a decade of top-flight research at the University's Advanced Technology Institute and delivers the type of innovation that UK industry can be proud of. This is an example of how private-public partnership can deliver real-world solutions to roadblocks in cutting-edge technologies. We are currently in talks with major semiconductor manufacturers to transfer this technology to the wider market and are continuing our internationally-leading research into novel contacting technologies."

####

For more information, please click here

Contacts:
Media Enquiries
Peter La, Press Office at the University of Surrey
Tel: +44 (0)1483 689191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Academic/Education

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Nanotubes/Buckyballs/Fullerenes

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nano-C Receives EPA Approvals for Single Walled Carbon Nanotubes July 21st, 2015

Global Carbon Nanotube Industry 2015 Market Research Report July 20th, 2015

Old astronomic riddle on the way to be solved July 16th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project