Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne battery technology helps power Chevy Volt

New Chevy Volt
New Chevy Volt

Abstract:
This month, thousands of new Chevy Volt owners will begin the real road tests of the first mass-produced plug-in hybrid electric car. While much of the car's engineering is unique, consumers may be unaware that some of its most extraordinary technology is inside the nearly 400-lb. battery that powers the vehicle in electric mode.

Argonne battery technology helps power Chevy Volt

Argonne, IL | Posted on January 24th, 2011

The battery's chemistry is based in part on a revolutionary breakthrough pioneered by scientists at the U.S. Department of Energy's Argonne National Laboratory. The new development helps the Volt's battery—a lithium-ion design similar to those in your cell phone or laptop—last longer, run more safely and perform better than batteries currently on the market.

"To me this cuts right to the heart of green energy," said Jeff Chamberlain, who heads Argonne's battery research and development. "This battery technology is a step towards energy independence for the U.S.; it helps create jobs; and it can have a positive impact on the environment."

The story begins in the late 1990s, when the DOE's Office of Basic Energy Sciences funded an intensive study of lithium-ion batteries. "Existing materials weren't good enough for a high-range vehicle," explained Michael Thackeray, an Argonne Distinguished Fellow who is one of the holders of the original patent. "The Argonne materials take a big step forward in extending the range for an electric vehicle."

In order to improve the design, scientists had to know how batteries worked at the atomic level.

"What we really needed to do was understand the molecular structure of the material," said Argonne chemist Chris Johnson.

At its most basic level, a lithium battery is composed of a negatively charged anode and a positively charged cathode. Between them is a thin membrane that allows only tiny, positively charged lithium ions to pass through. When a battery is fully charged, all of the lithium ions are contained in the anode. When you unplug the battery from the charger and begin to use it, the lithium ions flow from the anode through the membrane to react with the cathode—creating an electrical current.

The team wanted to improve the cathode, the positively charged material. They began by using incredibly intense X-rays from Argonne's Advanced Photon Source synchrotron to monitor and understand reactions that occur in lithium batteries—in real time. Next, they set out to modify and optimize the cathode materials. Using new synthesis methods, they created lithium- and manganese-rich materials that proved remarkably more stable than existing designs.
Because manganese-rich cathodes are more stable than those used in today's batteries, the new batteries are safer and less likely to overheat. Manganese is cheap, so the battery will cost less to manufacture. The researchers also upped the upper charging voltage limit to 4.6 volts—higher than the usual operating voltage—and saw a tremendous jump in the battery's energy capacity.

####

For more information, please click here

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Products

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Industrial Nanotech, Inc. Announces Launch of Heat Shield(TM) EPX4 Thermal Insulation and Chemical Resistant Coating June 12th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Environment

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

NNI Publishes Workshop Report and Launches Web Portal on Nanosensors: Both outputs support the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ June 24th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Automotive/Transportation

June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Evident Thermoelectrics Announces Launch of World's-First Thermoelectric Product Based on Skutterudite Material Technology July 7th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project