Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tracking signs of better catalysts

A representation of a volcano graph. SUNCAT uses volcano graphs to determine where important chemical properties coincide. A substance with those properties is a good candidate for a catalyst. (Image courtesy Frank Abild-Pederson.)
A representation of a volcano graph. SUNCAT uses volcano graphs to determine where important chemical properties coincide. A substance with those properties is a good candidate for a catalyst. (Image courtesy Frank Abild-Pederson.)

Abstract:
SLAC researchers have taken a big step toward making useful catalysts easier to find or create—processes that have previously relied on trial and error.

by Lori Ann White

Tracking signs of better catalysts

Menlo Park, CA | Posted on January 24th, 2011

As explained yesterday in the Proceedings of the National Academy of Sciences, SLAC researchers at the Center for Sustainable Energy through Catalysis, or SUNCAT, are using advances in surface chemistry research to better describe the intrinsically complex process of catalysis, a type of chemical reaction that occurs at the surfaces of materials.

In catalysis, a chemical called a catalyst helps speed chemical reactions between other molecules, without itself being changed. Catalysis is the basis for most important industrial chemical processes, used for years in everything from refining oil to producing plastic or fertilizers. It is also the basis for some of the crucial processes needed to turn sunlight into fuels and other chemicals. However, the theory to explain just why certain substances make chemical reactions happen faster or more efficiently—and, more importantly, to predict even better catalysts—has lagged behind experimental efforts. The researchers at SUNCAT want to use an approach called density functional theory to change that.

"[The paper] is really almost a program for the theory portion of catalysis research at SLAC and Stanford," said Jens Nørskov, director of SUNCAT and the paper's lead author. The paper does not shy away from the challenges such research still faces, he added, "but it illustrates where our methods can help." The methods of density functional theory involve identifying important trends for classes of catalysts and chemical reactions; those trends can then be used to predict new and better catalysts. In this approach, the electrons that are key to forming and dissolving chemical bonds are treated as interacting clouds of varying densities, and a descriptor, or more general way to describe their behavior, is developed. Thus far, density functional theory has been applied successfully for an important class of catalysts called transition metals.

"Our approach has been to try to reduce the number of parameters we need to describe each specific reaction," explained SUNCAT researcher and co-author of the paper Frank Abild-Pedersen. Such parameters include the structures of the substances involved, any impurities they contain, and what intermediate products are created during a process—to name only a few. "Some groups do lots and lots of calculations. We want to simplify."

In the case of the transition metals, such simplification narrowed down a complex process to two important descriptors. This, for instance, enabled the researchers to identify nickel-iron catalysts as a cheaper, better alternative to nickel alone—a catalyst commonly used in a process called catalytic methanation, which produces methane for synthetic fuels.

"You can always try to understand everything completely," said co-author and SUNCAT researcher Felix Studt, "but to predict something new you need a simple model." Despite the simplifications, Nørskov's team still needs to perform a certain amount of number crunching to pin down the behavior of a representative member of a class of catalysts before any descriptors can be developed.

"We had to develop an understanding based on some transition metals to be able to predict how the rest would react," Studt explained. An important consideration is to find a descriptor that is easy to calculate.

All three scientists agree that the transition metals are a simple example. In contrast, "Oxides, nitrides, sulfides—density functional theory doesn't describe them as well," Abild-Pedersen said. The team is working to refine not only their descriptors, but how they develop them, to address tougher cases.

"We're deriving an approach," Studt said. "We start with finding new catalysts for easy classes, and in the process we refine and extend our approach."

####

For more information, please click here

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Chemistry

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Possible Futures

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project