Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Curved carbon for electronics of the future

An electron has a magnetic field attached – the so-called
spin. One can imagine that all electrons carry around a little
bar magnet. In flat graphite layers the small bar magnets
point in random directions. By bending the atom thin graphite layer into a tube with a diameter of just a few nanometers the individual electrons are forced to move in simple circles
around the tube and all the spins align in the direction of the
tube. This feature can be used in future nanoelectronics.
An electron has a magnetic field attached – the so-called spin. One can imagine that all electrons carry around a little bar magnet. In flat graphite layers the small bar magnets point in random directions. By bending the atom thin graphite layer into a tube with a diameter of just a few nanometers the individual electrons are forced to move in simple circles around the tube and all the spins align in the direction of the tube. This feature can be used in future nanoelectronics.

Abstract:
A new scientific discovery could have profound implications for nanoelectronic components.

Curved carbon for electronics of the future

Copenhagen | Posted on January 24th, 2011

Researchers from the Nano-Science Center at the Niels Bohr Institute, University of Copenhagen, in collaboration with Japanese researchers, have shown how electrons on thin tubes of graphite exhibit a unique interaction between their motion and their attached magnetic field - the so-called spin. The discovery paves the way for unprecedented control over the spin of electrons and may have a big impact on applications for spin-based nanoelectronics. The results have been published in the prestigious journal Nature Physics.

Carbon is a wonderfully versatile element. It is a basic building block in living organisms, one of the most beautiful and hardest materials in the form of diamonds and is found in pencils as graphite. Carbon also has great potential as the foundation for computers of the future as components can be produced from flat, atom thin graphite layers, observed for the first time in the laboratory in 2004 - a discovery which elicited last year's Nobel Prize in Physics.

In addition to a charge all electrons have an attached magnetic field - a so-called spin. One can imagine that all electrons carry around a little bar magnet. The electron's spin has great potential as the basis for future computer chips, but this development has been hindered by the fact that the spin has proved difficult to control and measure.

In flat graphite layers the movement of the electrons do not affect the spin and the small bar magnets point in random directions. As a result, graphite was not an obvious candidate for spin based electronics at first.

New spin in curved carbon

"However, our results show that if the graphite layer is curved into a tube with a diameter of just a few nanometers, the spin of the individual electrons are suddenly strongly influenced by the motion of the electrons. When the electrons on the nanotube are further forced to move in simple circles around the tube the result is that all the spins turn in along the direction of the tube", explain the researchers Thomas Sand Jespersen and Kasper Grove-Rasmussen at the Nano-Science Center at the Niels Bohr Institute.

It has previously been assumed that this phenomenon could only happen in special cases of a single electron on a perfect carbon nanotube, floating freely in a vacuum - a situation that is very difficult to realize in reality. Now the researchers' results show that the alignment takes place in general cases with arbitrary numbers of electrons on carbon tubes with defects and impurities, which will always be present in realistic components.

The interaction between motion and spin was measured by sending a current through a nanotube, where the number of electrons can be individually controlled. The two Danish researchers explain that they have further demonstrated how you can control the strength of the effect or even turn it off entirely by choosing the right number of electrons. This opens up a whole range of new possibilities for the control of and application of the spin.

Unique Properties

In other materials, like gold for example, the motion of the electrons also have a strong influence on the direction of the spin, but as the motion is irregular, one cannot achieve control over the spin of the electrons. Carbon distinguishes itself once again from other materials by possessing entirely unique properties - properties that may be important for future nanoelectronics.

Facts about spin in electronics

In current electronics and computer chips signals run as small electric currents. That is to say, the information is carried by the electric charge of electrons, while neglecting their quantum mechanical property, spin. An exception, however, are hard drives where information is written as small magnetic fields on the surface of a disk.

When this information needs to be read again it is precisely the effect of the magnetic fields on the spin of electrons that is used - the effect called magneto resistance, which elicited the Nobel Prize for Physics in 2008. Actually, an entire research field is designated as spin-tronics, a contraction of spin-electronics. Intense work is being done moving towards a greater use of spin properties in electronics, not just the charge.

A vision for the future is the construction computers based entirely on the principles of quantum mechanics and here one simply cannot get around understanding and controlling the spin of individual electrons.

####

For more information, please click here

Contacts:
Gertie Skaarup

Copyright © Niels Bohr Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Possible Futures

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Academic/Education

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Announcements

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Oxford Instruments Plasma Technology announces a new partner in Korea August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project