Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Grain orientation boosts thermoelectric performance

The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47  10−4 W m−1 K−2.  Credit Nano Letters
The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 10−4 W m−1 K−2. Credit Nano Letters

Abstract:
Thermoelectric materials promise everything from clean power for cars to clean power from the sun, but making these materials widely useful has been a challenge.

Grain orientation boosts thermoelectric performance

Chestnut Hill, MA | Posted on January 23rd, 2011

Now researchers from Boston College, MIT and GMZ Energy have developed an inexpensive, simple mechanical process for achieving a major increase in the efficiency of a common thermoelectric material: bismuth telluride selenide (BiTeSe), which has been used in commercial devices since the 1950s. "Power generation applications for thermoelectrics are not big now because the materials aren't good enough," said MIT professor Gang Chen. He believes their findings could pave the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

Xiao Yan and his colleagues from BC, MIT and GMZ Energy achieved a 22% improvement in peak thermoelectric figure of merit (ZT - see 1 below) from 0.85 to 1.04 at 125 degrees C in Bi2Te2.7Se0.3 by repressing the as-pressed samples. The main improvement is the large increase of electrical conductivity with only small increase of thermal conductivity and similar Seebeck coefficient. "We want to attain the single-crystal-like high power factor (see 2 below) by preparing preferential grain orientation while maintaining low thermal conductivity by nanocomposite approach," said Boston College professor Zhifeng Ren.

An innovative mechanical process technique was employed by Xiao Yan and his co-workers from BC, MIT and GMZ Energy. As-pressed samples were initially obtained by ball milling the mixture of individual element materials into alloyed BiTeSe nanopowders and then hot pressing the powder into bulk forms with nano constituents. Then as-pressed bulks were pressed again at elevated temperatures in a bigger diameter die to obtain re-pressed bulk samples. "During repressing process, lateral flow takes place, which helps to orient the grains and thus improve the power factor," explained Ren and Chen.

This work was published in Nano Letters, pubs.acs.org/doi/abs/10.1021/nl101156v

(1) ZT is a measure of the thermoelectric performance of a material

(2) Power factor is defined as a product of squared Seebeck coefficient and electrical conductivity.

####

For more information, please click here

Contacts:
Ed Hayward
Boston College Office of Public Affairs
617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Materials/Metamaterials

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Automotive/Transportation

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project