Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Grain orientation boosts thermoelectric performance

The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 ◊ 10−4 W m−1 K−2.  Credit Nano Letters
The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 ◊ 10−4 W m−1 K−2. Credit Nano Letters

Abstract:
Thermoelectric materials promise everything from clean power for cars to clean power from the sun, but making these materials widely useful has been a challenge.

Grain orientation boosts thermoelectric performance

Chestnut Hill, MA | Posted on January 23rd, 2011

Now researchers from Boston College, MIT and GMZ Energy have developed an inexpensive, simple mechanical process for achieving a major increase in the efficiency of a common thermoelectric material: bismuth telluride selenide (BiTeSe), which has been used in commercial devices since the 1950s. "Power generation applications for thermoelectrics are not big now because the materials aren't good enough," said MIT professor Gang Chen. He believes their findings could pave the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

Xiao Yan and his colleagues from BC, MIT and GMZ Energy achieved a 22% improvement in peak thermoelectric figure of merit (ZT - see 1 below) from 0.85 to 1.04 at 125 degrees C in Bi2Te2.7Se0.3 by repressing the as-pressed samples. The main improvement is the large increase of electrical conductivity with only small increase of thermal conductivity and similar Seebeck coefficient. "We want to attain the single-crystal-like high power factor (see 2 below) by preparing preferential grain orientation while maintaining low thermal conductivity by nanocomposite approach," said Boston College professor Zhifeng Ren.

An innovative mechanical process technique was employed by Xiao Yan and his co-workers from BC, MIT and GMZ Energy. As-pressed samples were initially obtained by ball milling the mixture of individual element materials into alloyed BiTeSe nanopowders and then hot pressing the powder into bulk forms with nano constituents. Then as-pressed bulks were pressed again at elevated temperatures in a bigger diameter die to obtain re-pressed bulk samples. "During repressing process, lateral flow takes place, which helps to orient the grains and thus improve the power factor," explained Ren and Chen.

This work was published in Nano Letters, pubs.acs.org/doi/abs/10.1021/nl101156v

(1) ZT is a measure of the thermoelectric performance of a material

(2) Power factor is defined as a product of squared Seebeck coefficient and electrical conductivity.

####

For more information, please click here

Contacts:
Ed Hayward
Boston College Office of Public Affairs
617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Possible Futures

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Environment

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

UQ research accelerates next-generation ultra-precise sensing technology June 10th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Energy

Yale researchersí technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Automotive/Transportation

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Solar/Photovoltaic

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

New generation of high-efficiency solar thermal absorbers developed June 20th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic