Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Grain orientation boosts thermoelectric performance

The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 × 10−4 W m−1 K−2.  Credit Nano Letters
The peak dimensionless thermoelectric figure-of-merit (ZT) of Bi2Te3-based n-type single crystals is about 0.85 in the ab plane at room temperature, which has not been improved over the last 50 years due to the high thermal conductivity of 1.65 W m−1 K−1 even though the power factor is 47 × 10−4 W m−1 K−2. Credit Nano Letters

Abstract:
Thermoelectric materials promise everything from clean power for cars to clean power from the sun, but making these materials widely useful has been a challenge.

Grain orientation boosts thermoelectric performance

Chestnut Hill, MA | Posted on January 23rd, 2011

Now researchers from Boston College, MIT and GMZ Energy have developed an inexpensive, simple mechanical process for achieving a major increase in the efficiency of a common thermoelectric material: bismuth telluride selenide (BiTeSe), which has been used in commercial devices since the 1950s. "Power generation applications for thermoelectrics are not big now because the materials aren't good enough," said MIT professor Gang Chen. He believes their findings could pave the way for a new generation of products - from semiconductors and air conditioners to car exhaust systems and solar power technology - that run cleaner.

Xiao Yan and his colleagues from BC, MIT and GMZ Energy achieved a 22% improvement in peak thermoelectric figure of merit (ZT - see 1 below) from 0.85 to 1.04 at 125 degrees C in Bi2Te2.7Se0.3 by repressing the as-pressed samples. The main improvement is the large increase of electrical conductivity with only small increase of thermal conductivity and similar Seebeck coefficient. "We want to attain the single-crystal-like high power factor (see 2 below) by preparing preferential grain orientation while maintaining low thermal conductivity by nanocomposite approach," said Boston College professor Zhifeng Ren.

An innovative mechanical process technique was employed by Xiao Yan and his co-workers from BC, MIT and GMZ Energy. As-pressed samples were initially obtained by ball milling the mixture of individual element materials into alloyed BiTeSe nanopowders and then hot pressing the powder into bulk forms with nano constituents. Then as-pressed bulks were pressed again at elevated temperatures in a bigger diameter die to obtain re-pressed bulk samples. "During repressing process, lateral flow takes place, which helps to orient the grains and thus improve the power factor," explained Ren and Chen.

This work was published in Nano Letters, pubs.acs.org/doi/abs/10.1021/nl101156v

(1) ZT is a measure of the thermoelectric performance of a material

(2) Power factor is defined as a product of squared Seebeck coefficient and electrical conductivity.

####

For more information, please click here

Contacts:
Ed Hayward
Boston College Office of Public Affairs
617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Materials/Metamaterials

Electron spin brings order to high entropy alloys April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Environment

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Automotive/Transportation

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project