Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Device May Revolutionize Computer Memory

Researchers have developed a single “unified” device that can perform both volatile and nonvolatile memory operation, with applications that could affect computer start times and energy efficiency for internet servers.
Researchers have developed a single “unified” device that can perform both volatile and nonvolatile memory operation, with applications that could affect computer start times and energy efficiency for internet servers.

Abstract:
Researchers from North Carolina State University have developed a new device that represents a significant advance for computer memory, making large-scale "server farms" more energy efficient and allowing computers to start more quickly.

by Matt Shipman

New Device May Revolutionize Computer Memory

Raleigh, NC | Posted on January 22nd, 2011

Traditionally, there are two types of computer memory devices. Slow memory devices are used in persistent data storage technologies such as flash drives. They allow us to save information for extended periods of time, and are therefore called nonvolatile devices. Fast memory devices allow our computers to operate quickly, but aren't able to save data when the computers are turned off. The necessity for a constant source of power makes them volatile devices.

But now a research team from NC State has developed a single "unified" device that can perform both volatile and nonvolatile memory operation and may be used in the main memory.

"We've invented a new device that may revolutionize computer memory," says Dr. Paul Franzon, a professor of electrical and computer engineering at NC State and co-author of a paper describing the research. "Our device is called a double floating-gate field effect transistor (FET). Existing nonvolatile memory used in data storage devices utilizes a single floating gate, which stores charge in the floating gate to signify a 1 or 0 in the device - or one ‘bit' of information. By using two floating gates, the device can store a bit in a nonvolatile mode, and/or it can store a bit in a fast, volatile mode - like the normal main memory on your computer."

The double floating-gate FET could have a significant impact on a number of computer problems. For example, it would allow computers to start immediately, because the computer wouldn't have to retrieve start-up data from its hard drive - the data could be stored in its main memory.

The new device would also allow "power proportional computing." For example, Web server farms, such as those used by Google, consume an enormous amount of power - even when there are low levels of user activity - in part because the server farms can't turn off the power without affecting their main memory.

"The double floating-gate FET would help solve this problem," Franzon says, "because data could be stored quickly in nonvolatile memory - and retrieved just as quickly. This would allow portions of the server memory to be turned off during periods of low use without affecting performance."

Franzon also notes that the research team has investigated questions about this technology's reliability, and that they think the device "can have a very long lifetime, when it comes to storing data in the volatile mode."

The paper, "Computing with Novel Floating-Gate Devices," will be published Feb. 10 in IEEE's Computer. The paper was authored by Franzon; former NC State Ph.D. student Daniel Schinke; former NC State master's student Mihir Shiveshwarkar; and Dr. Neil Di Spigna, a research assistant professor at NC State. The research was funded by the National Science Foundation.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Paul Franzon
919.515.7351

Dr. Neil Di Spigna
919.515.8939

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Memory Technology

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project