Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA-Leti and SHINKO Sign Common-Lab Agreement

Abstract:
Teams Will Collaborate to Bring Silicon Interposer Capabilities into Volume Production for Use in Portable Electronics and Other Applications

CEA-Leti and SHINKO Sign Common-Lab Agreement

Grenoble, France | Posted on January 21st, 2011

In a move that promises to provide increased performance and smaller size for portable electronics and other advanced systems, CEA-Leti today announced it has signed a multiyear agreement with SHINKO ELECTRIC INDUSTRIES CO., LTD. ("SHINKO") to develop advanced semiconductor packaging technology.

The work, which will be part of Leti's broader efforts in advanced silicon substrates, will focus on silicon interposers, a technology that has existed for some time but that now offers a number of compelling advantages for next-generation applications. These passive intermediate layers can be used in several ways to boost the useable performance and reduce the footprint of advanced silicon chips, providing much of the benefit of 3D packaging without requiring wholesale changes to design and manufacturing processes.

Example applications include the mounting of multiple chips on a single interposer, and the use of interposers to route large numbers of input/output connections onto silicon dies that would otherwise be too small to accommodate them.

Engineers from SHINKO, headquartered in Nagano, Japan, will work alongside Leti personnel at the common lab, which will be located at Leti's headquarters facility in Grenoble.

The development of interposer technology is an example of how Leti approaches its mission of bringing innovations from the developmental stage into daily use. Leti provides world-class facilities and expertise for experimentation and evaluation, plus the ability to integrate new technologies into existing high-volume manufacturing flows - an essential step in the commercialization process.

"SHINKO has a long and proud history of bringing innovative products and processes to market, and we are very excited at the prospect of working with them here in Grenoble," said Laurent Malier, CEO of Leti. "This collaboration will combine the intelligence and creativity of fine technical staffs, and we expect the resulting advances to be quickly adopted into real-world applications."

"SHINKO has done the preceding development of the processing 3D silicon packaging technologies so far. SHINKO can accelerate Development for the mass production of the next generation high density substrate by the joint development with Leti" said Mitsuharu Shimizu, Senior Corporate Officer of SHINKO.

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC campus, CEA-Leti operates 8,000-m˛ state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,500 patent families.

For more information, visit www.leti.fr.

About SHINKO
SHINKO was founded in Nagano, Japan in 1946. SHINKO is an all around manufacturer of semiconductor packages, notably lead frame and PLP (Plastic Laminated Package), and recognized as a leader in the industry.

More information on SHINKO is available on SHINKO's web site: www.shinko.co.jp/english/index.html

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency for CEA-Leti
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project