Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Breakthrough in converting heat waste to electricity

Abstract:
Automotive, chemical, brick and glass industries could benefit from scientific discovery

Breakthrough in converting heat waste to electricity

Evanston, IL | Posted on January 20th, 2011

Researchers at Northwestern University have placed nanocrystals of rock salt into lead telluride, creating a material that can harness electricity from heat-generating items such as vehicle exhaust systems, industrial processes and equipment and sun light more efficiently than scientists have seen in the past.

The material exhibits a high thermoelectric figure of merit that is expected to enable 14 percent of heat waste to electricity, a scientific first. Chemists, physicists and material scientists at Northwestern collaborated to develop the material. The results of the study are published by the journal Nature Chemistry.

"It has been known for 100 years that semiconductors have this property that can harness electricity," said Mercouri Kanatzidis, the Charles E. and Emma H. Morrison Professor of Chemistry in The Weinberg College of Arts and Sciences. "To make this an efficient process, all you need is the right material, and we have found a recipe or system to make this material."

Kanatzidis, co-author of the study, and his team dispersed nanocrystals of rock salt (SrTe) into the material lead telluride (PbTe). Past attempts at this kind of nanoscale inclusion in bulk material have improved the energy conversion efficiency of lead telluride, but the nano inclusions also increased the scattering of electrons, which reduced overall conductivity. In this study, the Northwestern team offers the first example of using nanostructures in lead telluride to reduce electron scattering and increase the energy conversion efficiency of the material.

"We can put this material inside of an inexpensive device with a few electrical wires and attach it to something like a light bulb," said Vinayak Dravid, professor of materials science and engineering at Northwestern's McCormick School of Engineering and Applied Science and co-author of the paper. "The device can make the light bulb more efficient by taking the heat it generates and converting part of the heat, 10 to 15 percent, into a more useful energy like electricity."

The automotive, chemical, brick, glass and any industry that uses heat to make products could make their system more efficient with the use of this scientific breakthrough, said Kanatzidis, who also has a joint appointment at the Argonne National Laboratory.

"The energy crisis and the environment are two major reasons to be excited about this discovery, but this could just be the beginning," Dravid said. "These types of structures may have other implications in the scientific community that we haven't thought of yet, in areas such as mechanical behavior and improving strength or toughness. Hopefully others will pick up this system and use it."

####

For more information, please click here

Contacts:
Erin White

847-491-4888

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Possible Futures

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Energy

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016

Automotive/Transportation

Nanoscale view of energy storage January 16th, 2017

Illinois team advances GaN-on-Silicon for scalable high electron mobility transistors January 10th, 2017

Going green with nanotechnology December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Industrial

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

Acquisitions/Mergers/Splits

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Entest BioMedical, Inc. in Discussions to Acquire Nanotechnology Delivery System for Cancer Therapy June 3rd, 2015

Evident Thermoelectrics Acquires GMZ Energy: Investment Accelerates Launch Of Evident's Thermoelectric Modules For Waste Heat May 20th, 2015

Keysight Technologies Begins Trading as Independent Company November 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project