Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotech Medicine

Credit: EUREKA
Credit: EUREKA

Abstract:
To rebuild damaged parts of a human body from scratch is a dream that has long fired human imagination, from Mary Shelley's Doctor Frankenstein to modern day surgeons. Now, a team of European scientists has made a promising contribution to reconstructive surgery thanks to an original multidisciplinary approach matching cutting-edge medicine to the latest developments in nanotechnology.

Nanotech Medicine

EU | Posted on January 18th, 2011

According to the World Health Organisation (WHO), an estimated 322,000 deaths globally per year are linked to severe injuries from fire and in many of these cases death could have been avoided with surgical intervention.

In this type of intervention, when major burns patients have insufficient skin left to graft on the most damaged part of their body, new skin has literally to be grown from the patient's own skin cells. However, the long delay in growing the skin can expose the burns patient to increased risk of infection and dehydration; so to help those cells to multiply, specialists use a particular kind of component called polymeric material. Because of their extraordinary range of properties, polymeric materials play a ubiquitous role in our daily life. This role ranges from familiar synthetic plastics: plastic bags or yoghurt cups, to natural biopolymers such as wood or proteins that are present in the human body.

New nano-structured materials

It has been known for the last few years that man made synthetic polymeric materials have the potential to grow and multiply human cells. ‘About 10 years ago, scientists discovered the important influence that nano-structures had on the way a line of cells would develop. It was the beginning of an entire new scientific field, somewhere between medicine and nanotechnology,' says Professor Johannes Heitz, Senior Research Associate at the University of Linz, Austria and main coordinator of the ModPolEUV project.

In the case of human skin cells, re-implantation of the tissue can be performed once a sufficient amount of skin is obtained, by growing it on a polymeric material surface.

However, in many cases, imperfections in the material structure can make the process relatively long and sometimes inefficient, with cells developing erratically.

The team of Austrian, Czech and Polish scientists involved in the research project managed to develop a new and simple way to create nano-structured materials that would allow a better development of human cells.

The Polish partner in the team, the Military University of Technology of Warsaw, has been in charge of the development of the new laser-based technology called EUV (Extreme Ultra-Violet) that was used for the creation of the nano-structured polymer surfaces. A beam of EUV light formed with a unique mirror developed by the Czech partner REFLEX S.R.O is directed on the surface allowing the creation of new kinds of polymeric materials. This innovative technique allows for a very high degree of precision, from 10 to 20 nanometres, whereas conventional techniques allowed only for a maximal precision level of 100 nanometres. ‘One of the newest theories in the field of cell growing is that the smaller the structure, the wider the possibilities to manipulate cells,' says Professor Heitz.

A wide range of human cells

The EUV technique, thanks to its particular level of precision, also allows for the conservation of the material's structure, which was not the case with other methods used to modify the polymer. ‘A regular structure is essential if the material is to be used for the purpose of growing human cells,' says Dr Henryk Fiederowicz, Professor at the Military University of Technology.

The story does not end there. Nano-structures built through the EUV technique have the ability to influence the behaviour of organic cells and different kind of cells can be grown better and faster depending on the type of polymer surface used.

The variety of material used to grow human stem cells will determinate the way cells will differentiate, meaning that they will transform into another human cell type. In other words: ‘Using one type of polymer material or another will help you grow different types of muscle, nerves, cells adapted to a human heart, bone or any other part of the human body,' says Professor Heitz.

Thanks to their affinity to human tissue and cells, polymeric materials could also be used for designing entire artificial implants. Indeed, many types of implants are already being made out of polymer materials, such as heart valves and bloods vessels. Using the EUV technique would reduce the odds of implant rejection, as the range of new materials created could be adapted to interact perfectly with specific parts of a patient's body.

Broad applications

All partners agree on the fact that EUREKA has helped them to find elsewhere in Europe the expertise and skills unavailable in their own countries. The next step is to bring their innovation to the market.

The Military Institute of Technology has already handled several EUV installations to laboratories in the USA, Germany, the Czech Republic, France, Japan, China and South Korea. It is now preparing for a full commercial phase, in partnership with the Polish company PREVAC, a leader in the market of high-precision instruments.

Applications of this novel technique could go far beyond nano-medicine and bio-technologies. An important potential market could be the one of micro-electronics, with its ever-expanding need for high-precision lithography; applications could be proposed to every type of industry where nano-structures are used. For instance, in micro-mechanics, integrated optics, wear reduction or the production of nano-composite materials.

For researchers at Linz University, the cell-growing technology is still in a testing phase and Professor Heitz prefers not to be overwhelmed by enthusiasm, even though he concedes that results have been ‘very encouraging so far'. ‘The interaction of cells with which structure dimensions are below 100 nanometres is currently the topic of a huge international effort,' he says. Despite the importance of the innovation ‘our contribution is very small when compared to the many other laboratories working in this field at the moment'.

According to Professor Heitz, ‘recreating whole organs is still a scientist's dream'. Yet the outcome of the E! 3892 ModPolEUV project might just have brought the dream a little closer to reality.

####

For more information, please click here

Contacts:
Prof. Johannes Heitz
Institute of Applied Physics
Johannes Kepler University Linz
Altenbergerstr. 69
A-4040 Linz
Austria
Tel. +43 (0) 732 2468-9248

www.jku.at/applphys/content

Copyright © EUREKA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanobiotechnology

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE