Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > T-Shirt Replaces Battery

Current clothing trends: A wearable and flexible fiber supercapacitor with a fully encapsulated electrolyte is formed by entangling plastic wire covered with ZnO NWs (see SEM image) around a Kevlar fiber covered with gold-coated ZnO NWs. This supercapacitor shows promise as a highly efficient, wearable energy storage device.
Current clothing trends: A wearable and flexible fiber supercapacitor with a fully encapsulated electrolyte is formed by entangling plastic wire covered with ZnO NWs (see SEM image) around a Kevlar fiber covered with gold-coated ZnO NWs. This supercapacitor shows promise as a highly efficient, wearable energy storage device.

Abstract:
Fiber-based electrochemical micro-supercapacitor

T-Shirt Replaces Battery

Weinheim, Germany | Posted on January 18th, 2011

Will we soon be plugging our mobile phone into our t-shirt instead of putting in a battery? This vision is not totally out of reach: the first steps in this direction have already been taken. Now a team led by Zhong Lin Wang at the Georgia Institute of Technology (Atlanta, USA) and Jong Min Kim of Samsung Electronics in South Korea is introducing a prototype for a flexible energy storage device that can be worked into textiles. As the scientists report in the journal Angewandte Chemie, this supercapacitor is made of a very special arrangement of zinc oxide nanowires grown on conventional fibers.

Although smaller, lighter components are constantly being developed, most devices for energy generation and storage are much too bulky and heavy for increasingly miniaturized electronic devices of the future. Supercapacitors are an interesting alternative to batteries and rechargeable batteries for energy storage. They can be recharged almost endlessly and extremely fast; however, previous examples have not been flexible or light enough.

The research team has now developed a prototype for a high-efficiency fiber-based electrochemical micro-supercapacitor that uses zinc oxide nanowires as electrodes. The substrate for one of the electrode is a flexible, fine plastic wire; for the other electrode it is a fiber made of Kevlar. Kevlar is the material used to make bulletproof vests. The researchers were able to grow zinc oxide nanowires on each of these substrates. Additional coatings with materials like gold and manganese oxide could further improve the charge capacitance. Using tweezers, the researchers then wrapped each of the plastic wires with a Kevlar fiber. This assembly was then embedded in a solid gel electrolyte that separates the two electrodes and allows for the necessary charge transport. A bundle of these fibers could be processed to form a thread.

Zinc oxide has special advantages over conventional supercapacitor materials,: it can be grown on any desired substrate in any form at low temperature (below 100 °C) and it is both biocompatible and environmentally friendly.

A particularly intriguing application would be the use of these new charge-storage media in combination with flexible fiber nanogenerators, which Wang and his team have previously developed. The wearer's heartbeat and steps, or even a light wind, would be enough to move the piezoelectric zinc oxide nanowires in the fibers, generating electrical current.

In the form of a "power shirt" such a system could deliver enough current for small electronic devices, such as mobile phones or small sensors like those used to warn firemen of toxins.

Author: Zhong Lin Wang, Georgia Institute of Technology, Atlanta (USA), www.nanoscience.gatech.edu/zlwang/wang.html

Title: Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201006062

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Sensors

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Textiles/Clothing

Thinnest feasible membrane produced April 17th, 2014

Making clothes from sugar: IBN researchers have found a green and efficient method to produce nylon from sugar April 1st, 2014

FibeRio® to Present “Polyester Nanofibers for Oil and Fuel Filtration" at AFS Spring 2014 Conference March 19th, 2014

Fabrics Resistant to Growth of Microbes Produced in Iran March 17th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE