Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Clarkson University Professor Synthesizes Brightest Fluorescent Nanoparticles Applications in material science, medicine and biology

Transmission electron microscopy (TEM) image of an ultrabright fluorescent mesoporous silica nanoparticle (image colored artificially to match the actual color of the dye in the particles).
Transmission electron microscopy (TEM) image of an ultrabright fluorescent mesoporous silica nanoparticle (image colored artificially to match the actual color of the dye in the particles).

Abstract:
Clarkson University Physics Professor Igor Sokolov and his team have discovered a method of making the brightest ever synthesized fluorescent silica nanoparticles.

Clarkson University Professor Synthesizes Brightest Fluorescent Nanoparticles Applications in material science, medicine and biology

Potsdam, NY | Posted on January 17th, 2011

The scientists reported on the first successful approach to synthesizing ultrabright fluorescent mesoporous silica nanoparticles this fall in the leading interdisciplinary scientific journal Small.

You can see the full article at onlinelibrary.wiley.com/doi/10.1002/smll.201001337/abstract

These nanoparticles have potential applications in medicine, biology, material science, and environmental protection, among many other uses.

Fluorescent materials are already used in many of these applications. However, having much brighter labeling particles will allow much finer detection of environmental pollutants, signals in biosensors and even the detection of explosives.

In fluorescence, an initial ignition light energizes molecules, and then the molecules reemit the light with a different color. This phenomenon can be used in many different applications because it is easily detectable, using optical filters to remove the ignition light, leaving only the particles' light visible.

"The particles should have a significant impact in the biomedical area," says Sokolov. "For example, you can create particles of different colors, which can be made to stick to particular biological molecules inside cells. Then you can see and trace those molecules easily with existing fluorescent microscopes. This fluorescent labeling helps to identify diseased cells and may show what is causing the disease. The particles are much more stable against photo-beaching than typical fluorescent dye. This means that one can trace the particles for a very long time."

Sokolov's process physically entraps a large number of organic fluorescent molecules inside nanoporous silica particles, which can be 20 to 50 nanometers in diameter, while preventing the molecules from leaking.

As an example of their brightness, the fluorescence of 40-nanometer particles is 34 times brighter than the brightest water-dispersible (25-30 nanometer) quantum dots and seem to be the brightest nanoparticles created so far.

In 2007, Sokolov and his team discovered a method of making the brightest ever synthesized fluorescent silica micro (non-nano) particles. Various attempts to decrease the size of the particles down to the nanoscale led to the particles that were bright but not ultrabright. The problem was in the dye leakage. It took the group several years to finally synthesize the ultrabright nanoparticles.

Sokolov and postdoctoral fellow Eun-Bum Cho (now an assistant professor at Seoul National University of Science and Technology) and Ph.D. student Dmytro Volkov developed the process, which gives the desired nanoparticles. The group, which now includes postdoctoral fellow Shajesh Palantavida, is currently looking at the development of the particles suitable for biomedical labeling.

The research was partially supported by the National Science Foundation and the U.S. Army Research Laboratory's Army Research Office. It was performed in Clarkson's Nanoengineering and Biotechnology Laboratories Center (NABLAB), a unit led by Sokolov and established to promote cross-disciplinary collaborations within the University.

NABLAB comprises more than a dozen faculty members who apply the expertise of Clarkson scholars to cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, and more.

####

About Clarkson University
Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world's pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

For more information, please click here

Contacts:
Michael P. Griffin
Director of News & Digital Content Services
15-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Environment

Nanoparticles Prove Effective in Removing Phosphor from Calcareous Soil December 10th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanocatalysts Can Reduce Pollution Caused by Diesel Engines December 4th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Quantum Dots/Rods

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE