Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clarkson University Professor Synthesizes Brightest Fluorescent Nanoparticles Applications in material science, medicine and biology

Transmission electron microscopy (TEM) image of an ultrabright fluorescent mesoporous silica nanoparticle (image colored artificially to match the actual color of the dye in the particles).
Transmission electron microscopy (TEM) image of an ultrabright fluorescent mesoporous silica nanoparticle (image colored artificially to match the actual color of the dye in the particles).

Abstract:
Clarkson University Physics Professor Igor Sokolov and his team have discovered a method of making the brightest ever synthesized fluorescent silica nanoparticles.

Clarkson University Professor Synthesizes Brightest Fluorescent Nanoparticles Applications in material science, medicine and biology

Potsdam, NY | Posted on January 17th, 2011

The scientists reported on the first successful approach to synthesizing ultrabright fluorescent mesoporous silica nanoparticles this fall in the leading interdisciplinary scientific journal Small.

You can see the full article at onlinelibrary.wiley.com/doi/10.1002/smll.201001337/abstract

These nanoparticles have potential applications in medicine, biology, material science, and environmental protection, among many other uses.

Fluorescent materials are already used in many of these applications. However, having much brighter labeling particles will allow much finer detection of environmental pollutants, signals in biosensors and even the detection of explosives.

In fluorescence, an initial ignition light energizes molecules, and then the molecules reemit the light with a different color. This phenomenon can be used in many different applications because it is easily detectable, using optical filters to remove the ignition light, leaving only the particles' light visible.

"The particles should have a significant impact in the biomedical area," says Sokolov. "For example, you can create particles of different colors, which can be made to stick to particular biological molecules inside cells. Then you can see and trace those molecules easily with existing fluorescent microscopes. This fluorescent labeling helps to identify diseased cells and may show what is causing the disease. The particles are much more stable against photo-beaching than typical fluorescent dye. This means that one can trace the particles for a very long time."

Sokolov's process physically entraps a large number of organic fluorescent molecules inside nanoporous silica particles, which can be 20 to 50 nanometers in diameter, while preventing the molecules from leaking.

As an example of their brightness, the fluorescence of 40-nanometer particles is 34 times brighter than the brightest water-dispersible (25-30 nanometer) quantum dots and seem to be the brightest nanoparticles created so far.

In 2007, Sokolov and his team discovered a method of making the brightest ever synthesized fluorescent silica micro (non-nano) particles. Various attempts to decrease the size of the particles down to the nanoscale led to the particles that were bright but not ultrabright. The problem was in the dye leakage. It took the group several years to finally synthesize the ultrabright nanoparticles.

Sokolov and postdoctoral fellow Eun-Bum Cho (now an assistant professor at Seoul National University of Science and Technology) and Ph.D. student Dmytro Volkov developed the process, which gives the desired nanoparticles. The group, which now includes postdoctoral fellow Shajesh Palantavida, is currently looking at the development of the particles suitable for biomedical labeling.

The research was partially supported by the National Science Foundation and the U.S. Army Research Laboratory's Army Research Office. It was performed in Clarkson's Nanoengineering and Biotechnology Laboratories Center (NABLAB), a unit led by Sokolov and established to promote cross-disciplinary collaborations within the University.

NABLAB comprises more than a dozen faculty members who apply the expertise of Clarkson scholars to cancer cell research, fine particles for bio and medical applications, synthesis of smart materials, advancement biosensors, and more.

####

About Clarkson University
Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world's pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

For more information, please click here

Contacts:
Michael P. Griffin
Director of News & Digital Content Services
15-268-6716

Copyright © Clarkson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Nanomedicine

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Discoveries

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Materials/Metamaterials

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Quantum Dots/Rods

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Rice fine-tunes quantum dots from coal: Rice University scientists gain control of electronic, fluorescent properties of coal-based graphene March 18th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

Nanobiotechnology

From tobacco to cyberwood March 31st, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE