Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular Imprints Ships Semiconductor Industry-First Nanoimprint Mask Replication System to Dai Nippon Printing Co., Ltd.

Abstract:
Perfecta™ MR5000 Positioned to Support Semiconductor Volume Manufacturing with 6025 Form Factor Nanoimprint Mask

Molecular Imprints Ships Semiconductor Industry-First Nanoimprint Mask Replication System to Dai Nippon Printing Co., Ltd.

Austin, TX | Posted on January 13th, 2011

Molecular Imprints, Inc., the market and technology leader for nanoimprint lithography systems and solutions, today introduced the Perfecta MR5000 — its new Jet and Flash™ Imprint Lithography (J-FIL™) imprint mask replication platform for the semiconductor industry. Representing the industry's first nanopatterning system specifically designed to replicate 6025 imprint masks, the Perfecta MR5000 enables multiple identical replica masks to be fabricated from a single e-beam master, substantially reducing mask costs, an important component in delivering low cost of ownership for imprint's use in advanced non-volatile memory architectures.

Molecular Imprints is also pleased to announce that Dai Nippon Printing Co., Ltd. (DNP), the leading merchant supplier of masks to the semiconductor industry, has taken delivery of the first MR5000 system, furthering the close and continuing collaboration between the two companies in the development of nanoimprint masks for semiconductor manufacturing at 2Xnm and beyond.

"A viable low-cost patterning technology will be an essential enabler in producing next generations of solid state memories cost effectively, particularly given the lithography intensive architectures in advanced memory devices such as 3D memory," stated Mark Melliar-Smith, CEO of Molecular Imprints. "Semiconductor manufacturers are already leveraging the high-fidelity patterning performance of our J-FIL technology in their development programs. The ability of the Perfecta MR5000 to deliver leading-edge, high quality imprint masks puts in place key infrastructure components necessary for nanoimprint's manufacturing adoption."

"Our purchase of the Perfecta MR5000 reflects DNP's continued technical leadership and commitment to serve the semiconductor industry with advanced photomask solutions," according to Jun-Ichi Tsuchiya, General Manager of Electronic Device Operations at DNP. "We will be using this system to develop the mask replication process to provide replicas to our nanoimprint lithography customers and partners in 2011."

Perfecta MR5000 represents a significant advancement in nanopatterning technology. Taking e-beam written leading-edge 6025 "master" masks, the system is capable of transferring the patterns flawlessly onto 6025 replicas that can be accepted by a manufacturing wafer imprint lithography system. Featuring the company's enhanced IntelliJet™ Drop Pattern Generator technology, the Perfecta MR5000 dispenses picoliter resist droplets mapped to local feature density, enabling excellent residual layer thickness (RLT) uniformity for pattern transfer fidelity of 2Xnm features, while virtually eliminating the need for resist waste disposal. By generating multiple "replica" masks from a single "master," mask cost of ownership can be significantly reduced and contribute to an overall low cost-of-ownership for the wafer lithography process.

"Our customers and industry partners continue to invest in nanoimprint technology as an alternative to the increasingly expensive and complex vision presented by optical patterning," added Melliar-Smith. "Momentum continues to grow and the Perfecta MR5000 represents a critical step forward in building the infrastructure to deliver nanoimprint and J-FIL as a manufacturing solution for semiconductor memory applications."

####

About Molecular Imprints
Molecular Imprints, Inc. (MII) is the technology leader for high-resolution, low cost-of-ownership nanoimprint lithography systems. MII is leveraging its innovative Jet and Flash™ Imprint Lithography (J-FIL™) technology with IntelliJet™ material application to become the worldwide market and technology leader in high-volume patterning solutions for storage and memory devices, while enabling emerging markets in clean energy, biotechnology, and other industries. MII enables nanoscale patterning by delivering a comprehensive nanopatterning solution that is affordable, compatible and extendible to sub-10-nanometer resolution levels.

For more information, please click here

Contacts:
Corporate PR Contact
Paul Hofemann
Molecular Imprints, Inc.
1-512-339-7760 X311

Copyright © Molecular Imprints

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Memory Technology

Buckle up for fast ionic conduction June 16th, 2015

A KAIST research team develops the first flexible phase-change random access memory June 15th, 2015

Argonne scientists announce first room-temperature magnetic skyrmion bubbles: New ideas are bubbling up for more efficient computer memory June 13th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Nanoelectronics

Exagan Raises €5.7 Million to Produce High-efficiency GaN-on-Silicon Power-switching Devices on 200mm Wafers: Leti-and-Soitec Spinout Focused on Becoming Leading European Source Of GaN Devices for Solar, Automotive, Telecoms and Infrastructure June 25th, 2015

Nanowires could be the LEDs of the future June 25th, 2015

Leti to Present Solutions to New Applications Using 3D Technologies at SEMICON West LetiDay Event, July 14: Leti Experts also Will Speak at TechXPOT Session on MEMS and STS Session on Lithography Cost-and-Productivity Issues Below 14nm June 22nd, 2015

Graphene heat-transfer riddle unraveled June 17th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Tools

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

New-Contracts/Sales/Customers

Centre for Process Innovation pilots Beneq’s breakthrough roll-to-roll ALD system for moisture barrier films June 3rd, 2015

Argonne chooses Beneq’s TFS 500 Atomic Layer Deposition System: Modularity and flexibility make for a natural choice May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project