Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cracking a Tooth

The black teeth of an Eastern beaded chiton, a sea mollusk, are used for scraping algae from rocks. They are capped with one of the hardest biominerals known, a nanocomposite of magnetite and chitin-based fibers.
The black teeth of an Eastern beaded chiton, a sea mollusk, are used for scraping algae from rocks. They are capped with one of the hardest biominerals known, a nanocomposite of magnetite and chitin-based fibers.

Abstract:
3-D map of atoms sheds light on nanoscale interfaces in teeth, may aid materials design

By Megan Fellman

Cracking a Tooth

Evanston, IL | Posted on January 12th, 2011

Teeth and bone are important and complex structures in humans and other animals, but little is actually known about their chemical structure at the atomic scale. What exactly gives them their renowned toughness, hardness and strength? How do organisms control the synthesis of these advanced functional composites?

Now, using a highly sophisticated atomic-scale imaging tool on a sea creature's tooth, two Northwestern University researchers have peeled away some of the mystery of organic/inorganic interfaces that are at the heart of tooth and bone structure. They are the first to produce a three-dimensional map of the location and identity of millions of individual atoms in the complex hybrid material that allows the animal to literally chew rock.

Demonstrating that atom-probe tomography (APT) can be used to interrogate such materials opens up the possibility of tracking fluoride in teeth and cancer and osteoporosis drugs in bone (at previously inaccessible length scales). The detailed knowledge of organic/inorganic interfaces also will help scientists rationally design useful new materials -- flexible electronics, polymers and nanocomposite materials, such as organic photovoltaics -- that combine the best properties of organic and inorganic materials.

The results will be published Jan. 13 by the journal Nature.

"The interface between the organic and inorganic materials plays a large role in controlling properties and structure," said Derk Joester, senior author of the paper. "How do organisms make and control these materials? We need to understand this architecture on the nanoscale level to design new materials intelligently. Otherwise we really have no idea what is going on."

Joester is the Morris E. Fine Junior Professor in Materials and Manufacturing at the McCormick School of Engineering and Applied Science. Lyle Gordon, a doctoral student in Joester's lab, is the other author of the paper.

The two set out to find the organic fibers they knew to be an important part of the tooth's structure, buried in the tough outer layer of the tooth, made of magnetite. Their quantitative mapping of the tooth shows that the carbon-based fibers, each 5 to 10 nanometers in diameter, also contained either sodium or magnesium ions. Joester and Gordon are the first to have direct proof of the location, dimension and chemical composition of organic fibers inside the mineral.

They were surprised by the chemical heterogeneity of the fibers, which hints at how organisms modulate chemistry at the nanoscale. Joester and Gordon are anxious to learn more about how the organic fibers interface with the inorganic minerals, which is key to understanding hybrid materials.

"The tooth's toughness comes from this mix of organic and inorganic materials and the interfaces between them," Joester said. "While this is in principle well known, it is intriguing to think we may have overlooked how subtle changes in the chemical makeup of nanoscale interfaces may play a role in, for instance, bone formation or the diffusion of fluoride into tooth enamel. In this regard, atom-probe tomography has the potential to revolutionize our understanding."

Atom-probe tomography (APT) produces an atom-by-atom, 3-D reconstruction of a sample with sub-nanometer resolution. But many in the field didn't think APT would work to analyze a material made up of organic and inorganic parts.

Fortunately for Joester and Gordon, Northwestern has both David Seidman, a leader in the field who uses APT to study metals, and two of the few APT instruments in the country. (There are less than a dozen.) Seidman, Walter P. Murphy Professor of Materials Science and Engineering, encouraged Joester to take the risk and use APT to study biological architectures. The scientists also were able to exchange ideas with the engineers developing 3-D atom-probe instruments at CAMECA, a scientific instrumentation company in nearby Madison, Wis.

Joester and Gordon imaged teeth of the chiton, a tiny marine mollusk, because much is known about the biomineralization process. The chiton lives in the sea and feeds on algae found on rocks. It continually makes new rows of teeth -- one a day -- to replace mature but worn teeth; in conveyor-belt fashion, the older teeth move down the creature's tongue-like radula toward the mouth where it feeds.

Chiton teeth resemble human teeth in that they have a hard and tough outer layer -- equivalent to our enamel -- and a softer core. Instead of enamel, the rock-chewing chitons use magnetite, a very hard iron oxide, which gives their teeth a black luster.

The researchers extracted micron-sized samples from the leading edge of the tooth. Using a focused ion beam tool at the Northwestern University Atomic and Nanoscale Characterization Experimental Center core facility, these samples were fashioned into very sharp tips (less than 20 nanometers across). The process is reminiscent of sharpening a pencil, albeit with a supercharged stream of gallium ions.

The APT technique applies an extremely high electric field to the sample; atoms on the surface ionize, fly off and hit an imaging detector (similar to those found in night-vision equipment). The atoms are stripped off atom-by-atom and layer-by-layer, like peeling an onion. Computer methods then are used to calculate the original location of the atoms, producing a 3-D map or tomogram of millions of atoms within the sample.

Joester and Gordon now are studying the tooth enamel of a vertebrate and plan to apply APT to bone, which is also made of organic and inorganic parts, to learn more about its nanoscale structure.

The National Science Foundation and the Canadian National Sciences and Engineering Research Council supported the research.

The title of the paper is "Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth."

####

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers find new way to control light with electric fields May 25th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Possible Futures

Researchers find new way to control light with electric fields May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Tools

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Dental

New technology can detect tiny ovarian tumors: 'Synthetic biomarkers' could be used to diagnose ovarian cancer months earlier than now possible April 10th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project