Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSD engineers give solar power a boost

UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego
UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego

Abstract:
The growing popularity of solar photovoltaic (PV) systems across the United States has made it more important to maximize their power input. That's why UC San Diego environmental engineering professor Jan Kleissl is working on technologies and methods that will better predict how much power we can actually harness from the sun.

UCSD engineers give solar power a boost

San Diego, CA | Posted on January 12th, 2011

In a paper recently published in the journal Renewable Energy (*), "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Kleissl and his Ph.D. student Matt Lave explain why it's important to strategize on solar installation, depending upon the location of the building relative to the sun. For example, Kleissl and his students at the UC San Diego Jacobs School of Engineering have improved the solar map (solar.ucsd.edu/) for the state of California, which allows homeowners, photovoltaic installers and utilities to better predict how much energy they will get out of their solar systems. The map can be viewed via Google Earth for free.

"Probably the most important result of this work for California is that in all coastal areas (Los Angeles, San Francisco, San Diego) it is advantageous to install the panels facing about 10-degrees west of south," Kleissl said. "This not only optimizes energy production, but it also improves the correlation of solar power production with the load. Panels facing southwest 'see' the sun longer and at a better angle than panels facing south, which means that the energy generated is larger during the peak demand hours (3-to-5p.m.), making the energy more valuable. The generally clear conditions during the annual load peaks (also known as Santa Anas to Southern Californians) mean that the solar panels produce at the optimum power. On the other hand, wholesale energy prices during the peak time may be 10 times those during other days. In a future with more variable electricity rates this margin may tip the balance of economics in favor of solar energy and there will be greater incentives for installing panels facing southwest. Our maps show that there are already benefits of doing so now as the energy generation increases."

(*) www.sciencedirect.com/science/journal/09601481

Kleissl further explains his intensive solar research at UC San Diego in this recent video produced by SPIE the international society for optics and photonics:

mfile.akamai.com/65904/mov/spiestorage.download.akamai.com/65904/SPIEtv/JanKleissl.mov

####

For more information, please click here

Contacts:
Andrea Siedsma

858-822-0899

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic