Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSD engineers give solar power a boost

UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego
UC San Diego environmental engineering professor Jan Kleissl is developing technologies and methods that allow homeowners, photovoltaic installers and utilities to better predict how much power they will get out of their solar systems. Credit: UC San Diego

Abstract:
The growing popularity of solar photovoltaic (PV) systems across the United States has made it more important to maximize their power input. That's why UC San Diego environmental engineering professor Jan Kleissl is working on technologies and methods that will better predict how much power we can actually harness from the sun.

UCSD engineers give solar power a boost

San Diego, CA | Posted on January 12th, 2011

In a paper recently published in the journal Renewable Energy (*), "Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States," Kleissl and his Ph.D. student Matt Lave explain why it's important to strategize on solar installation, depending upon the location of the building relative to the sun. For example, Kleissl and his students at the UC San Diego Jacobs School of Engineering have improved the solar map (solar.ucsd.edu/) for the state of California, which allows homeowners, photovoltaic installers and utilities to better predict how much energy they will get out of their solar systems. The map can be viewed via Google Earth for free.

"Probably the most important result of this work for California is that in all coastal areas (Los Angeles, San Francisco, San Diego) it is advantageous to install the panels facing about 10-degrees west of south," Kleissl said. "This not only optimizes energy production, but it also improves the correlation of solar power production with the load. Panels facing southwest 'see' the sun longer and at a better angle than panels facing south, which means that the energy generated is larger during the peak demand hours (3-to-5p.m.), making the energy more valuable. The generally clear conditions during the annual load peaks (also known as Santa Anas to Southern Californians) mean that the solar panels produce at the optimum power. On the other hand, wholesale energy prices during the peak time may be 10 times those during other days. In a future with more variable electricity rates this margin may tip the balance of economics in favor of solar energy and there will be greater incentives for installing panels facing southwest. Our maps show that there are already benefits of doing so now as the energy generation increases."

(*) www.sciencedirect.com/science/journal/09601481

Kleissl further explains his intensive solar research at UC San Diego in this recent video produced by SPIE the international society for optics and photonics:

mfile.akamai.com/65904/mov/spiestorage.download.akamai.com/65904/SPIEtv/JanKleissl.mov

####

For more information, please click here

Contacts:
Andrea Siedsma

858-822-0899

Copyright © University of California - San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Solar/Photovoltaic

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Manipulating light inside opaque layers April 24th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic