Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Plasmonics: From metallic foils to cancer treatment

Fig.1: (above) SEM images of nanoparticles fabricated for SERS by electron-beam
lithography. (below) Illustration of multiplex cancer targeting by SERS nanoparticles encoded by Raman molecules and cancer antibodies.
Fig.1: (above) SEM images of nanoparticles fabricated for SERS by electron-beam lithography. (below) Illustration of multiplex cancer targeting by SERS nanoparticles encoded by Raman molecules and cancer antibodies.

Abstract:
Highlight of STAM paper on plasmons in metallic nanostructures by Nagao et al.

Plasmonics: From metallic foils to cancer treatment

Tsukuba, Japan | Posted on January 12th, 2011

In a timely review paper, scientists from Japan, Germany, and Spain provide a highly relevant overview of the history, physical interpretation and applications of plasmons in metallic nanostructures.

Tadaaki Nagao at the International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) and colleagues in Germany and Spain present a review on plasmons in metallic nanomaterials. The article is published this week in the journal Science and Technology of Advanced Materials.

The authors provide an extensive overview of the properties of plasmons in nanomaterials with emphasis on pioneering work of Ruthemann and Lang on electron energy loss spectroscopy (EELS) of electron motion in thin metal foils; recent infrared analysis of nanoscale metallic nanorods and nanoislands produced by ‘top-down' photolithography; and the potential of metallic atomic wires for supporting plasmonic resonating modes. The review includes detailed explanations of plasmons for in vivo biosensing and nanoantennas.

A plasmon can be visualized as a collective oscillation of electronic ‘liquid' in metals, similar to waves in lake, which are collective mode of the water molecules. Furthermore, surface plasmons are such oscillations confined to the surfaces of metals, which display a strong interaction with light, leading to the formation of so-called ‘polaritons'. Futuristic applications of plasmons include ideal lenses and even invisibility cloaks.

Research in the 1940s by Ruthemann and Lang on electrons flowing in thin metal foils using EELS yielded the first experimental sign of the presence of the theoretically predicted ‘plasma oscillations' in metals. In 1957 Richie and colleagues predicted the existence of ‘surface localized' plasmons, which was confirmed by Powell and Swan by EELS a few years later. In the 1960s researchers determined optical dispersion curves using optical spectroscopy, thereby opening up the possibility of optical applications of plasmon structures.

In this review, Nagao and colleagues offer insights into optical applications of localized surface plasmons in structures produced by photolithography. Specific examples include metallic nanoantenna detectors—where resonant excitation of light leads to ultrahigh electromagnetic field enhancement owing to plasmon polaritons localized at the surface of nanostructures; and optical interactions between arrays of nanorods for ‘surface enhanced Raman scattering', which shows potential for in vivo biomolecular sensing. The authors also describe the fabrication of a prototype random-nanogap antenna for enhanced IR spectroscopy and in situ spectral monitoring of surface enhancement of infrared absorption during film growth.

Furthermore, the authors describe new trends in plasmonics research, in particular observation of plasmonic resonant modes in indium nanowires grown in ultrahigh vacuum on stepped silicon substrates. They predict that these nanowires will be used as building blocks for developing plasmonic devices of the future.

This review includes 86 references and 12 figures, providing an invaluable source of up-to-date information for newcomers and experts in this exciting field of research.

References and related websites

1. Tadaaki Nagao et al. Plasmons in nanoscale and atomic-scale system Science and Technology of Advanced Materials 11 (2010) No. 5, December. iopscience.iop.org/1468-6996/11/5/054506
Sci. Technol. Adv. Mater. Vol. 11 (2010) p. 054506 doi: 10.1088/1468-6996/11/5/054506

2. International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan www.nims.go.jp/eng/research/mana/index.html

3. Kirchhoff Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227,
D 69120, Heidelberg, Germany www.uni-heidelberg.de/index_e.html

4. Depto. de Física de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais
Vasco, Apdo. 1072, 20080 San Sebastian/Donostia, Spain www.ehu.es/p200-shenhm/en

5. Donostia International Physics Center (DIPC), Paseo de Manuel Lardizabal 4, 20018
San Sebastian/Donostia, Spain dipc.ehu.es/

6. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain www.ikerbasque.net

####

For more information, please click here

Contacts:
Media contacts:
National Institute for Materials Science, Tsukuba, Japan

Tel. +81-(0)29-859-2494

Copyright © MANA/NIMS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project