Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > The Trouble With Turning Graphite Into Diamond

January 12th, 2011

The Trouble With Turning Graphite Into Diamond

Abstract:
Converting graphite into diamond has been a long held dream of alchemists the world over. In the modern era, materials scientists have puzzled over this process because it's hard to work out why the conversion is so hard.

Measure the free energy of graphite and diamond and you'll find they are more or less the same. That implies that converting one into the other ought to be easy.

And yet in experiments, the conversion only works at temperatures well above 1700K and at pressures in excess of 12 GigaPascals. It's no wonder, then, that diamond is so rare and valuable

But why should graphite be so reluctant to make the change? Today, Rustam Khaliullin at the Swiss Federal Institute of Technology Zurich and a few buddies say they think they know why. These guys have created a computer model of the process which has identified the reason why diamond is so reluctant to form.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

Discoveries

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic