Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Delivering a potent cancer drug with nanoparticles can lessen side effects

A 3-D rendering of cisplatin.
A 3-D rendering of cisplatin.

Abstract:
The new nanoparticle, which delivers the drug in a form activated when it reaches its target, also treats tumors more effectively than the unadorned drug in mice.

By Anne Trafton, MIT News Office

Delivering a potent cancer drug with nanoparticles can lessen side effects

Cambridge, MA | Posted on January 11th, 2011

Researchers at MIT and Brigham and Women's Hospital have shown that they can deliver the cancer drug cisplatin much more effectively and safely in a form that has been encapsulated in a nanoparticle targeted to prostate tumor cells and is activated once it reaches its target.

Using the new particles, the researchers were able to successfully shrink tumors in mice, using only one-third the amount of conventional cisplatin needed to achieve the same effect. That could help reduce cisplatin's potentially severe side effects, which include kidney damage and nerve damage.

In 2008, the researchers showed that the nanoparticles worked in cancer cells grown in a lab dish. Now that the particles have shown promise in animals, the team hopes to move on to human tests.

"At each stage, it's possible there will be new roadblocks that will come up, but you just keep trying," says Stephen Lippard, the Arthur Amos Noyes Professor of Chemistry and a senior author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of Jan. 10.

Omid Farokhzad, associate professor at Harvard Medical School and director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women's Hospital, is also a senior author of the paper. Shanta Dhar, a postdoctoral associate in Lippard's lab, and Nagesh Kolishetti, a postdoctoral associate in Farokhzad's lab, are co-lead authors.

Better delivery

Cisplatin, which doctors began using to treat cancer in the late 1970s, destroys cancer cells by cross-linking their DNA, which ultimately triggers cell death. Despite its adverse side effects, which also include nerve damage and nausea, about half of all cancer patients receiving chemotherapy are taking Cisplatin or other platinum drugs.

Another problem with conventional cisplatin is its relatively short lifetime in the bloodstream. Only about 1 percent of the dose given to a patient ever reaches the tumor cells' DNA, and about half of it is excreted within an hour of treatment.

To prolong the time in circulation, the researchers decided to encase a derivative of cisplatin in a hydrophobic (water-repelling) nanoparticle. First, they modified the drug, which is normally hydrophilic (water-attracting), with two hexanoic acid units — organic fragments that repel water. That enabled them to encapsulate the resulting prodrug — a form that is inactive until it enters a target cell — in a nanoparticle.

Using this approach, much more of the drug reaches the tumor, because less of the drug is degraded in the bloodstream. The researchers found that the nanoparticles circulated in the bloodstream for about 24 hours, at least 5 times longer than un-encapsulated cisplatin. They also found that it did not accumulate as much in the kidneys as conventional cisplatin.

To help the nanoparticles reach their target, the researchers also coated them with molecules that bind to PSMA (prostate specific membrane antigen), a protein found on most prostate cancer cells.

After showing the nanoparticles' improved durability in the blood, the researchers tested their effectiveness by treating mice implanted with human prostate tumors. They found that the nanoparticles reduced tumor size as much as conventional cisplatin over 30 days, but with only 30 percent of the dose.

"They have very elegantly showed not just improved efficacy but also decreased toxicity," says Mansoor Amiji, chair of pharmaceutical sciences at Northeastern University's Bouvé College of Health Sciences, who was not involved in the research. "With a nanoparticle, you should be able to get higher doses into the patient, so you can have a much better therapeutic result and not worry as much about side effects."

This type of nanoparticle design could be easily adapted to carry other types of drugs, or even more than one drug at a time, as the researchers reported in a PNAS paper last October. They could also be designed to target tumors other than prostate cancer, as long as those tumors have known receptors that could be targeted. One example is the Her-2 receptor abundant in some types of breast cancer, says Lippard.

The particles tested in this paper are based on the same design as particles developed by Farokhzad and MIT Institute Professor Robert Langer that deliver the cancer drug docetaxel. A Phase I clinical trial to assess those particles began last week, run by BIND Biosciences.

Additional animal testing is needed before the cisplatin-carrying particles can go into human clinical trials, says Farokhzad. "At the end of the day, if the development results are all promising, then we would hope to put something like this in humans within the next three years," he says.

####

For more information, please click here

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE