Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > “Liquid Pistons” Could Drive New Advances in Camera Lenses and Drug Delivery

Researchers at Rensselaer Polytechnic Institute have developed liquid pistons, which can be used to precisely pump small volumes of liquid. Comprising the pistons are droplets of nanoparticle-infused ferrofluids, which can also function as liquid lenses that vibrate at high speeds and move in and out of focus as they change shape. These liquid pistons could enable a new generation of mobile phone cameras, medical imaging equipment, implantable drug delivery devices, and possibly even implantable eye lenses.  Video podcast (YouTube at www.youtube.com/user/rpirensselaer#p/a/u/0/X-xMxA5SpTs).
Researchers at Rensselaer Polytechnic Institute have developed liquid pistons, which can be used to precisely pump small volumes of liquid. Comprising the pistons are droplets of nanoparticle-infused ferrofluids, which can also function as liquid lenses that vibrate at high speeds and move in and out of focus as they change shape. These liquid pistons could enable a new generation of mobile phone cameras, medical imaging equipment, implantable drug delivery devices, and possibly even implantable eye lenses. Video podcast (YouTube at www.youtube.com/user/rpirensselaer#p/a/u/0/X-xMxA5SpTs).

Abstract:
Versatile Liquid Pistons Developed at Rensselaer Polytechnic Institute Have No Solid Moving Parts, Essentially Eliminating Wear

“Liquid Pistons” Could Drive New Advances in Camera Lenses and Drug Delivery

Troy, NY | Posted on January 11th, 2011

A few unassuming drops of liquid locked in a very precise game of "follow the leader" could one day be found in mobile phone cameras, medical imaging equipment, implantable drug delivery devices, and even implantable eye lenses.

Engineering researchers at Rensselaer Polytechnic Institute have developed liquid pistons, in which oscillating droplets of ferrofluid precisely displace a surrounding liquid. The pulsating motion of the ferrofluid droplets, which are saturated with metal nanoparticles, can be used to pump small volumes of liquid. The study also demonstrated how droplets can function as liquid lenses that constantly move, bringing objects into and out of focus.

These liquid pistons are highly tunable, scalable, and — because they lack any solid moving parts — suffer no wear and tear. The research team, led by Rensselaer Professor Amir H. Hirsa, is confident this new discovery can be exploited to create a host of new devices ranging from micro displacement pumps and liquid switches, to adaptive lenses and advanced drug delivery systems.

"It is possible to make mechanical pumps that are small enough for use in lab-on-a-chip applications, but it's a very complex, expensive proposition," said Hirsa, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. "Our electromagnetic liquid pistons present a new strategy for tackling the challenge of microscale liquid pumping. Additionally, we have shown how these pistons are well-suited for chip-level, fast-acting adaptive liquid lenses."

Results of the study are detailed in the paper "Electromagnetic liquid pistons for capillarity-based pumping," recently published online by the journal Lab on a Chip. The paper will be featured on the cover of the journal's February 2011 issue, and can be read online at: xlink.rsc.org/?DOI=c0lc00397b

Hirsa's team developed a liquid piston that is comprised of two ferrofluid droplets situated on a substrate about the size of a piece of chewing gum. The substrate has two holes in it, each hosting one of the droplets. The entire device is situated in a chamber filled with water.

Pulses from an electromagnet provoke one of the ferrofluid droplets, the driver, to vibrate back and forth. This vibration, in turn, prompts a combination of magnetic, capillary, and inertial forces that cause the second droplet to vibrate in an inverted pattern. The two droplets create a piston, resonating back and forth with great speed and a spring-like force. Researchers can finely control the strength and speed of these vibrations by exposing the driver ferrofluid to different magnetic fields.

In this way, the droplets become a liquid resonator, capable of moving the surrounding liquid back and forth from one chamber to another. Similarly, the liquid piston can also function as a pump. The shift in volume, as a droplet moves, can displace from the chamber an equal volume of the surrounding liquid. Hirsa said he can envision the liquid piston integrated into an implantable device that very accurately releases tiny, timed doses of drugs into the body of a patient.

As the droplets vibrate, their shape is always changing. By passing light through these droplets, the device is transformed into a miniature camera lens. As the droplets move back and forth, the lens automatically changes its focal length, eliminating the usual chore of manually focusing a camera on a specific object. The images are captured electronically, so software can be used to edit out any unfocused frames, leaving the user with a stream of clear, focused video.

The speed and quality of video captured from these liquid lenses has surpassed 30 hertz, which is about the quality of a typical computer web cam. Liquid lenses could mean lighter camera lenses that require only a fraction of the energy demanded by today's digital cameras. Along with handheld and other electronic devices, and homeland security applications, Hirsa said this technology could even hold the key to replacement eye lenses that can be fine-tuned using only high-powered magnets.

"There's really a lot we can do with these liquid pistons. It's an exciting new technology with great potential, and we're looking forward to moving the project even further along," he said.

Along with Hirsa, co-authors on the paper are Rensselaer doctoral graduates Bernard Malouin Jr., now with MIT's Lincoln Laboratory; and Michael Vogel, a private research consultant; Rensselaer mechanical engineering doctoral student Joseph Olles; and former postdoctoral researcher Lili Cheng, now with General Electric Global Research.

This study was supported with funding from the Defense Advanced Research Projects Agency (DARPA).

####

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Microfluidics/Nanofluidics

The mysterious 'action at a distance' between liquid containers November 26th, 2014

“Dolomite’s Resealable Chip Interface offers easy access to microfluidic chip surface” November 10th, 2014

Dolomite and Lab on a Chip launch Productizing Science® Competition 2015 October 7th, 2014

Govt.-Legislation/Regulation/Funding/Policy

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Nanomedicine

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE