Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Flares on the Move

Abstract:
Nanoparticle test kit shows how nanoparticles of different size disperse in tumor tissue

Flares on the Move

Weinheim, Germany | Posted on January 11th, 2011

Nanoparticles play a significant role in the development of future diagnostic and therapeutic techniques for tumors, for example as transporters for drugs or as contrast agents. Absorption and dispersion of nanoparticles in tumor tissue depend strongly on particle size. In order to systematically study this, scientists at the Massachusetts Institute of Technology (MIT, Cambridge, USA) and Harvard Medical School (Boston, USA) have now produced a set of fluorescent nanoparticles of various diameters between 10 and 150 nm. As the team led by Moungi G. Bawendi and Daniel G. Nocera reports in the journal Angewandte Chemie, they were able to use these to simultaneously follow the dispersion of particles of different sizes through mouse tumors in real time.

In order for nanoparticle-based biomedical techniques to work, the nanoparticles must be of optimal size. For studies, it is thus desirable to simultaneously observe the behavior of particles of different size in the same tumor in vivo. This requires chemically comparable particles of various sizes, each size group consisting of particles of uniform size and composition. Additionally, it must be possible to simultaneously detect and differentiate the various particles. Also, they must be biocompatible, and may not form aggregates or adsorb proteins. This complex challenge has now been met.

The researchers developed a set of nanoparticles in various sizes, which can be detected by means of fluorescing quantum dots. Quantum dots are semiconducting structures at the boundary between macroscopic solid bodies and the quantum-mechanical nano-world. By selectively producing quantum dots of different sizes, it is possible to obtain quantum dots that fluoresce at different defined wavelengths, which allows them to be simultaneously detected and differentiated.

To produce nanoparticles in different size classes, the scientists coated cadmium selenide/cadmium sulfide quantum dots with polymer ligands such as silicon dioxide and polyethylene glycol. They attained particles larger than 100 nm in diameter by attaching quantum dots to prefabricated silicon dioxide particles and then coating them with polyethylene glycol. For each size class they selected quantum dots that give off light of a different wavelength.

The researchers intravenously injected a mixture of particles with diameters of 12, 60, and 125 nm into mice with cancer. Fluorescence microscopy was used to follow the particles' entry into the tumor tissue in vivo. Whereas the 12 nm particles easily passed from the blood vessels into the tissue and rapidly spread out, the 60 nm particles passed through the walls of the vein but stayed within 10 Ám of the vessel wall, unable to pass farther into the tissue. The 125 nm particles essentially did not pass through the walls of the blood vessels at all.

Author: Moungi G. Bawendi, Daniel G. Nocera, Massachusetts Institute of Technology, Cambridge (USA), web.mit.edu/chemistry/www/faculty/nocera.html

Title: A Nanoparticle Size Series for In Vivo Fluorescence Imaging

Angewandte Chemie International Edition 2010, 49, No. 46, 8649-8652, Permalink to the article: dx.doi.org/10.1002/anie.201003142

####

For more information, please click here

Copyright © Angewandte Chemie International Edition

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Quantum Dots/Rods

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

MIPT-based researcher predicts new state of matter June 17th, 2014

Technology using microwave heating may impact electronics manufacture June 10th, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE