Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New solar cell self-repairs like natural plant systems

Jong Hyun Choi, an assistant professor of mechanical engineering at Purdue, and doctoral student Benjamin Baker use fluorescent imaging to view a carbon nanotube. Their research is aimed at creating a new type of solar cell designed to self-repair like natural photosynthetic systems. The approach might enable researchers to increase the service life and reduce costs for photoelectrochemical cells, which convert sunlight into electricity. (Purdue University photo/Mark Simons)
Jong Hyun Choi, an assistant professor of mechanical engineering at Purdue, and doctoral student Benjamin Baker use fluorescent imaging to view a carbon nanotube. Their research is aimed at creating a new type of solar cell designed to self-repair like natural photosynthetic systems. The approach might enable researchers to increase the service life and reduce costs for photoelectrochemical cells, which convert sunlight into electricity. (Purdue University photo/Mark Simons)

Abstract:
Researchers are creating a new type of solar cell designed to self-repair like natural photosynthetic systems in plants by using carbon nanotubes and DNA, an approach aimed at increasing service life and reducing cost.

New solar cell self-repairs like natural plant systems

West Lafayette, IN | Posted on January 10th, 2011

"We've created artificial photosystems using optical nanomaterials to harvest solar energy that is converted to electrical power," said Jong Hyun Choi, an assistant professor of mechanical engineering at Purdue University.

The design exploits the unusual electrical properties of structures called single-wall carbon nanotubes, using them as "molecular wires in light harvesting cells," said Choi, whose research group is based at the Birck Nanotechnology and Bindley Bioscience centers at Purdue's Discovery Park.

"I think our approach offers promise for industrialization, but we're still in the basic research stage," he said.

Photoelectrochemical cells convert sunlight into electricity and use an electrolyte - a liquid that conducts electricity - to transport electrons and create the current. The cells contain light-absorbing dyes called chromophores, chlorophyll-like molecules that degrade due to exposure to sunlight.

"The critical disadvantage of conventional photoelectrochemical cells is this degradation," Choi said.

The new technology overcomes this problem just as nature does: by continuously replacing the photo-damaged dyes with new ones.

"This sort of self-regeneration is done in plants every hour," Choi said.

The new concept could make possible an innovative type of photoelectrochemical cell that continues operating at full capacity indefinitely, as long as new chromophores are added.

Findings were detailed in a November presentation during the International Mechanical Engineering Congress and Exhibition in Vancouver. The concept also was unveiled in an online article (spie.org/x41475.xml?ArticleID=x41475) featured on the Web site for SPIE, an international society for optics and photonics.

The talk and article were written by Choi, doctoral students Benjamin A. Baker and Tae-Gon Cha, and undergraduate students M. Dane Sauffer and Yujun Wu.

The carbon nanotubes work as a platform to anchor strands of DNA. The DNA is engineered to have specific sequences of building blocks called nucleotides, enabling them to recognize and attach to the chromophores.

"The DNA recognizes the dye molecules, and then the system spontaneously self-assembles," Choi said

When the chromophores are ready to be replaced, they might be removed by using chemical processes or by adding new DNA strands with different nucleotide sequences, kicking off the damaged dye molecules. New chromophores would then be added.

Two elements are critical for the technology to mimic nature's self-repair mechanism: molecular recognition and thermodynamic metastability, or the ability of the system to continuously be dissolved and reassembled.

The research is an extension of work that Choi collaborated on with researchers at the Massachusetts Institute of Technology and the University of Illinois. The earlier work used biological chromophores taken from bacteria, and findings were detailed in a research paper published in November in the journal Nature Chemistry www.nature.com/nchem/journal/v2/n11/abs/nchem.822.html.

However, using natural chromophores is difficult, and they must be harvested and isolated from bacteria, a process that would be expensive to reproduce on an industrial scale, Choi said.

"So instead of using biological chromophores, we want to use synthetic ones made of dyes called porphyrins," he said.

ABSTRACT

Light Harvesting Single-Wall Carbon Nanotube Hybrids


Benjamin A. Baker, Tae-Gon Cha, M. Dane Sauffer, Yujun Wu, and Jong Hyun Choi

School of Mechanical Engineering, Bindley Bioscience Center, Birck Nanotechnology Center Purdue University


Due to extraordinary electron accepting and conductivity properties, single-wall carbon nanotubes (SWNT) are explored as molecular wires in light-harvesting cells. Here SWNT are employed as acceptors of photo-excited charge/energy in self-assembling aqueous soluble nanohybrids. DNA oligonucleotides are used as surfactants to solubilize an ensemble of individually dispersed SWNT in water. Water-soluble porphyrins, chlorophyll-like molecules with strong optical signatures in the visible range, are used as donors. A novel structure is developed that employs the oligonucleotides as a multi-functional "glue," simultaneously suspending SWNT while exploiting DNA target recognition capabilities to bind with donor porphyrin. Studies are made on the effects of nucleobase sequence and conformation of the oligonucleotide grafted onto the nanotube, demonstrating sequence based dependence in interaction efficiencies. Based on this sequence and conformation dependence, this structure presents the possibility of easy regeneration of the chromophores by modifying the conformation of the attached oligonucleotide. The various nanohybrids are characterized using a combination of optical, photoelectrochemical and visual techniques. Transductions in absorption spectra and fluorescence quenching show evidence of molecular interactions between porphyrin donor molecules and the nanotubes. Photoelectrochemical measurements provide further evidence of charge transfer interactions between photo-excited porphyrin and SWNT. This hybrid offers a facile manufacturing method for light harvesting nanomaterials, providing a novel pathway for regeneration of photo-degraded dyes in dye-sensitized solar cells.

####

For more information, please click here

Contacts:
Writer: Emil Venere, 765-494-4709,

Source: Jong Hyun Choi, 765-496-3562,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Academic/Education

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Self Assembly

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanotubes/Buckyballs/Fullerenes

Making robots more human April 29th, 2015

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Announcements

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Energy

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

ISDC To Showcase Northrop Grumman/Caltech Push Toward Space Solar Power April 28th, 2015

Research partnerships

Electron chirp: Cyclotron radiation from single electrons measured directly for first time: Method has potential to measure neutrino mass and look beyond the Standard Model of the universe April 29th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Solar/Photovoltaic

Engineering a better solar cell: UW research pinpoints defects in popular perovskites May 1st, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

Unique microscopic images provide new insights into ionic liquids April 28th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project