Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †
A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †

Abstract:
Materials to bypass semiconductor roadblocks are major target for first users

Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

Newhaven, UK | Posted on January 10th, 2011

Surrey NanoSystems announces the first sales of its innovative new nanomaterial growth system, the NanoGrowth-Catalyst, to the École Polytechnique of Montreal, and the University of Surrey's Advanced Technology Institute.

These leading research organizations have chosen the NanoGrowth-Catalyst as a platform for their work on materials including carbon nanotubes, silicon nanowires, graphene and nanoparticles for semiconductor, optical device and other applications. The growth system's multi-chamber design ensures the purest nanomaterial processing conditions by continuously maintaining the substrate under vacuum, from the deposition of catalysts to growth of materials.

One NanoGrowth-Catalyst system will be installed in Montreal, where it will support a wide range of research groups from the École Polytechnique and The University of Montreal studying topics including microelectronics, optoelectronics, and thin film physics.

This system will be populated with every major processing facility available including three processing chambers served by an automated handling system, and growth techniques including CVD, PECVD, nanoparticle deposition, sputtering, thermal annealing, and rapid thermal processing. It will also incorporate a unique form of rapid thermal growth for nanomaterials developed to prevent the agglomeration of catalyst particles. The configuration of the tool was specified by Professor Patrick Desjardins, Director of the École Polytechnique's Department of Engineering Physics.


One research group using the system will be the University of Montreal's chemistry department, led by Professor Richard Martel. The group's interests are very broad ranging, and include device-oriented programs looking at electronics, optoelectronics, sensing technologies and energy conversion, and fundamental research into the phenomena occurring at the interfaces of electroactive nanostructure materials - through projects including the deposition of controlled-size nanoparticles and passivation layers.

Dr Pierre Levesque of the University of Montreal's chemistry department comments: "We were looking for a very capable system that could support wide-ranging research, and which is easy to use. The very high-level software-controlled automation of nanomaterial processing offered by NanoGrowth-Catalyst gives us this versatility."

The Advanced Technology Institute (ATI) is a partner to Surrey NanoSystems and has already been using an earlier version of the NanoGrowth system for around four years to support its research into next-generation semiconductor and photonic device technologies. ATI is the first customer to receive the new NanoGrowth-Catalyst, and the system's advanced processing resources are now starting to play a role in its work. Facilities including the rapid infrared heating process and a water-cooled chuck are helping ATI to grow ordered carbon nanotube (CNT) structures while maintaining the substrate below 350 degrees C. Low temperature processing is critical as CNTs are typically grown at around 700 degrees C - a level that is incompatible with CMOS semiconductor fabrication. This pioneering semiconductor-related work is currently the subject of a current ATI paper in the journal Carbon†.

"The top-down infrared heating technique provided by this tool allows us to localize energy delivery very accurately", says Professor Ravi Silva, Head of the Nano-Electronics Centre at the Advanced Technology Institute. "The system provides unparalleled control of processing parameters, giving the required flexibility to support research into nanoelectronic materials - including carbon nanotubes, graphene and silicon nanowires - enabling us to overcome roadblocks to ongoing semiconductor development."

"Some researchers are still relying on simple thermal furnaces to develop nanomaterials", explains Ben Jensen of Surrey NanoSystems. "The NanoGrowth system's comprehensive suite of deposition and processing capabilities, plus end-to-end processing in vacuum, gives both researchers and commercial developers precise and automated control over catalyst deposition and material growth, to explore nanomaterial capabilities and turn ideas into repeatable production processes."

In addition to these sales, Surrey NanoSystems has built a third system for its in-house nanomaterials research effort, targeting materials for new forms of conducting via structures and dielectric materials to support the continued scaling of semiconductor devices. This system has three processing chambers, automated handling, and includes every processing option available, providing the best possible platform for research. Spare capacity on this tool will be made available to universities and their researchers working in related fields.

Surrey NanoSystems is represented in the USA by Axiom Resources Technologies.

† The paper appears in volume 49, Issue 1, January 2011, Pages 280-285;
dx.doi.org/10.1016/j.carbon.2010.09.021.

NanoGrowth is a registered trade mark of Surrey NanoSystems.

####

For more information, please click here

Contacts:
Media contact:
Ben Jensen, CTO, Surrey NanoSystems
t: +44 (0) 1273 515899
e:

Surrey NanoSystems, Euro Business Park, Building 24, Newhaven, BN9 0DQ, UK.
t: +44 (0)1273 515899;
www.surreynanosystems.com

Axiom Resources Technologies, Inc., 4430-C East Miraloma Avenue, Placentia, CA
92807, USA.
www.axrtech.com;
t: 714-974-4141;

Contact: Greg Mills

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Thin films

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Nanotubes/Buckyballs/Fullerenes

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Materials/Metamaterials

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Tools

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Publication on Atomic Force Microscopy based nanoscale IR Spectroscopy (AFM-IR) persists as a 2015 top downloaded paper July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Photonics/Optics/Lasers

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

New-Contracts/Sales/Customers

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project