Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †
A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †

Abstract:
Materials to bypass semiconductor roadblocks are major target for first users

Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

Newhaven, UK | Posted on January 10th, 2011

Surrey NanoSystems announces the first sales of its innovative new nanomaterial growth system, the NanoGrowth-Catalyst, to the École Polytechnique of Montreal, and the University of Surrey's Advanced Technology Institute.

These leading research organizations have chosen the NanoGrowth-Catalyst as a platform for their work on materials including carbon nanotubes, silicon nanowires, graphene and nanoparticles for semiconductor, optical device and other applications. The growth system's multi-chamber design ensures the purest nanomaterial processing conditions by continuously maintaining the substrate under vacuum, from the deposition of catalysts to growth of materials.

One NanoGrowth-Catalyst system will be installed in Montreal, where it will support a wide range of research groups from the École Polytechnique and The University of Montreal studying topics including microelectronics, optoelectronics, and thin film physics.

This system will be populated with every major processing facility available including three processing chambers served by an automated handling system, and growth techniques including CVD, PECVD, nanoparticle deposition, sputtering, thermal annealing, and rapid thermal processing. It will also incorporate a unique form of rapid thermal growth for nanomaterials developed to prevent the agglomeration of catalyst particles. The configuration of the tool was specified by Professor Patrick Desjardins, Director of the École Polytechnique's Department of Engineering Physics.


One research group using the system will be the University of Montreal's chemistry department, led by Professor Richard Martel. The group's interests are very broad ranging, and include device-oriented programs looking at electronics, optoelectronics, sensing technologies and energy conversion, and fundamental research into the phenomena occurring at the interfaces of electroactive nanostructure materials - through projects including the deposition of controlled-size nanoparticles and passivation layers.

Dr Pierre Levesque of the University of Montreal's chemistry department comments: "We were looking for a very capable system that could support wide-ranging research, and which is easy to use. The very high-level software-controlled automation of nanomaterial processing offered by NanoGrowth-Catalyst gives us this versatility."

The Advanced Technology Institute (ATI) is a partner to Surrey NanoSystems and has already been using an earlier version of the NanoGrowth system for around four years to support its research into next-generation semiconductor and photonic device technologies. ATI is the first customer to receive the new NanoGrowth-Catalyst, and the system's advanced processing resources are now starting to play a role in its work. Facilities including the rapid infrared heating process and a water-cooled chuck are helping ATI to grow ordered carbon nanotube (CNT) structures while maintaining the substrate below 350 degrees C. Low temperature processing is critical as CNTs are typically grown at around 700 degrees C - a level that is incompatible with CMOS semiconductor fabrication. This pioneering semiconductor-related work is currently the subject of a current ATI paper in the journal Carbon†.

"The top-down infrared heating technique provided by this tool allows us to localize energy delivery very accurately", says Professor Ravi Silva, Head of the Nano-Electronics Centre at the Advanced Technology Institute. "The system provides unparalleled control of processing parameters, giving the required flexibility to support research into nanoelectronic materials - including carbon nanotubes, graphene and silicon nanowires - enabling us to overcome roadblocks to ongoing semiconductor development."

"Some researchers are still relying on simple thermal furnaces to develop nanomaterials", explains Ben Jensen of Surrey NanoSystems. "The NanoGrowth system's comprehensive suite of deposition and processing capabilities, plus end-to-end processing in vacuum, gives both researchers and commercial developers precise and automated control over catalyst deposition and material growth, to explore nanomaterial capabilities and turn ideas into repeatable production processes."

In addition to these sales, Surrey NanoSystems has built a third system for its in-house nanomaterials research effort, targeting materials for new forms of conducting via structures and dielectric materials to support the continued scaling of semiconductor devices. This system has three processing chambers, automated handling, and includes every processing option available, providing the best possible platform for research. Spare capacity on this tool will be made available to universities and their researchers working in related fields.

Surrey NanoSystems is represented in the USA by Axiom Resources Technologies.

† The paper appears in volume 49, Issue 1, January 2011, Pages 280-285;
dx.doi.org/10.1016/j.carbon.2010.09.021.

NanoGrowth is a registered trade mark of Surrey NanoSystems.

####

For more information, please click here

Contacts:
Media contact:
Ben Jensen, CTO, Surrey NanoSystems
t: +44 (0) 1273 515899
e:

Surrey NanoSystems, Euro Business Park, Building 24, Newhaven, BN9 0DQ, UK.
t: +44 (0)1273 515899;
www.surreynanosystems.com

Axiom Resources Technologies, Inc., 4430-C East Miraloma Avenue, Placentia, CA
92807, USA.
www.axrtech.com;
t: 714-974-4141;

Contact: Greg Mills

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Nanoelectronics

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Tiny works of art with great potential: New materials for the construction of metal-organic 2-dimensional quasicrystals July 15th, 2016

Materials/Metamaterials

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Announcements

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Tools

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Nanometrics Announces Upcoming Investor Events July 20th, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

Photonics/Optics/Lasers

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

New-Contracts/Sales/Customers

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Nanometrics Selected for Third-Generation 3D-NAND Process Control: Atlas® Systems Extend Advanced Device Manufacturing Capability June 14th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic