Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †
A radical novel design concept for the growth of carbon nanotubes over large-area using a top-down CVD process allows high energy delivery to the catalyst whilst maintaining the substrate below 350 °C. Raman, EELS and HREM confirm the quality of the nanotubes is comparable with conventional catalytic nanotube growth at temperatures above 700 °C. †

Abstract:
Materials to bypass semiconductor roadblocks are major target for first users

Novel Nanomaterial System Will Help Create Materials Of The Future – For Applications From Semiconductors To Energy Conversion

Newhaven, UK | Posted on January 10th, 2011

Surrey NanoSystems announces the first sales of its innovative new nanomaterial growth system, the NanoGrowth-Catalyst, to the École Polytechnique of Montreal, and the University of Surrey's Advanced Technology Institute.

These leading research organizations have chosen the NanoGrowth-Catalyst as a platform for their work on materials including carbon nanotubes, silicon nanowires, graphene and nanoparticles for semiconductor, optical device and other applications. The growth system's multi-chamber design ensures the purest nanomaterial processing conditions by continuously maintaining the substrate under vacuum, from the deposition of catalysts to growth of materials.

One NanoGrowth-Catalyst system will be installed in Montreal, where it will support a wide range of research groups from the École Polytechnique and The University of Montreal studying topics including microelectronics, optoelectronics, and thin film physics.

This system will be populated with every major processing facility available including three processing chambers served by an automated handling system, and growth techniques including CVD, PECVD, nanoparticle deposition, sputtering, thermal annealing, and rapid thermal processing. It will also incorporate a unique form of rapid thermal growth for nanomaterials developed to prevent the agglomeration of catalyst particles. The configuration of the tool was specified by Professor Patrick Desjardins, Director of the École Polytechnique's Department of Engineering Physics.


One research group using the system will be the University of Montreal's chemistry department, led by Professor Richard Martel. The group's interests are very broad ranging, and include device-oriented programs looking at electronics, optoelectronics, sensing technologies and energy conversion, and fundamental research into the phenomena occurring at the interfaces of electroactive nanostructure materials - through projects including the deposition of controlled-size nanoparticles and passivation layers.

Dr Pierre Levesque of the University of Montreal's chemistry department comments: "We were looking for a very capable system that could support wide-ranging research, and which is easy to use. The very high-level software-controlled automation of nanomaterial processing offered by NanoGrowth-Catalyst gives us this versatility."

The Advanced Technology Institute (ATI) is a partner to Surrey NanoSystems and has already been using an earlier version of the NanoGrowth system for around four years to support its research into next-generation semiconductor and photonic device technologies. ATI is the first customer to receive the new NanoGrowth-Catalyst, and the system's advanced processing resources are now starting to play a role in its work. Facilities including the rapid infrared heating process and a water-cooled chuck are helping ATI to grow ordered carbon nanotube (CNT) structures while maintaining the substrate below 350 degrees C. Low temperature processing is critical as CNTs are typically grown at around 700 degrees C - a level that is incompatible with CMOS semiconductor fabrication. This pioneering semiconductor-related work is currently the subject of a current ATI paper in the journal Carbon†.

"The top-down infrared heating technique provided by this tool allows us to localize energy delivery very accurately", says Professor Ravi Silva, Head of the Nano-Electronics Centre at the Advanced Technology Institute. "The system provides unparalleled control of processing parameters, giving the required flexibility to support research into nanoelectronic materials - including carbon nanotubes, graphene and silicon nanowires - enabling us to overcome roadblocks to ongoing semiconductor development."

"Some researchers are still relying on simple thermal furnaces to develop nanomaterials", explains Ben Jensen of Surrey NanoSystems. "The NanoGrowth system's comprehensive suite of deposition and processing capabilities, plus end-to-end processing in vacuum, gives both researchers and commercial developers precise and automated control over catalyst deposition and material growth, to explore nanomaterial capabilities and turn ideas into repeatable production processes."

In addition to these sales, Surrey NanoSystems has built a third system for its in-house nanomaterials research effort, targeting materials for new forms of conducting via structures and dielectric materials to support the continued scaling of semiconductor devices. This system has three processing chambers, automated handling, and includes every processing option available, providing the best possible platform for research. Spare capacity on this tool will be made available to universities and their researchers working in related fields.

Surrey NanoSystems is represented in the USA by Axiom Resources Technologies.

† The paper appears in volume 49, Issue 1, January 2011, Pages 280-285;
dx.doi.org/10.1016/j.carbon.2010.09.021.

NanoGrowth is a registered trade mark of Surrey NanoSystems.

####

For more information, please click here

Contacts:
Media contact:
Ben Jensen, CTO, Surrey NanoSystems
t: +44 (0) 1273 515899
e:

Surrey NanoSystems, Euro Business Park, Building 24, Newhaven, BN9 0DQ, UK.
t: +44 (0)1273 515899;
www.surreynanosystems.com

Axiom Resources Technologies, Inc., 4430-C East Miraloma Avenue, Placentia, CA
92807, USA.
www.axrtech.com;
t: 714-974-4141;

Contact: Greg Mills

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Thin films

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Academic/Education

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Materials/Metamaterials

Aculon Hires New Business Development Director December 19th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Tools

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

New-Contracts/Sales/Customers

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE