Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > All that Glitters is Gold

Abstract:
Gold Cyclization Reaction Provides Important Building Blocks for Pharmaceuticals

All that Glitters is Gold

Weinheim, Germany | Posted on January 7th, 2011

In many significant natural products, furans are a key motif. These oxygen-containing five-membered heterocycles are also versatile building blocks in the construction of highly complex target structures. As such, they are important scaffolds in organic and pharmaceutical chemistry. As reported in the European Journal of Organic Chemistry, A. Stephen K. Hashmi and a team at Universität Heidelberg (Germany) have now introduced a general protocol for the preparation of highly substituted furans through a gold-catalyzed cyclization reaction.

The efficiency of reactions is often thought of in terms of atom economy, and the search for more efficient alternatives to classical chemical reactions is now an area of intense research. In this context, transition-metal catalysts are becoming a popular choice amongst chemists, because they are often used in only very small amounts, which conforms to the atom-economy rule and minimizes waste. Notably, in contrast to the often harsh conditions required to perform classical chemical transformations, most transition-metal catalyzed reactions can be performed under mild reaction conditions and within a short timeframe.

Because gold catalysts are robust, their popularity has increased significantly in the last few years. Gold catalysts can easily be handled in air, and they are also tolerant to water. Moreover, gold catalysts often show higher activity and higher selectivity than their more popular palladium counterparts. Gold is particularly well suited for substrates that bear a triple carbon-carbon bond (i.e., an alkyne), as it coordinates preferentially to this bond, resulting in a highly reactive complex that is prone to attack. As such, the gold-catalyzed cyclization of an alkyne tethered to an alcohol can provide easy access to highly substituted furans.

The German research team found that the gold(I)-catalyzed cyclization of various 2-alkynylallyl alcohols proceeded well and afforded the desired furan products with the use of low catalyst loadings under very mild reaction conditions. Importantly, both di- and trisubstituted furans could be obtained, which allows structural variety in the building blocks. Bifunctional substrates could also be cyclized to provide chemically interesting bisfurans. This synthetically simple route provides quick and easy access to highly substituted furan building blocks, which may help to facilitate the study of this important class of compounds.

Author: A. Stephen K. Hashmi, Universität Heidelberg (Germany),

Title: Cyclization of 2-Alkynylallyl Alcohols to Highly Substituted Furans by Gold(I)-Carbene Complexes

European Journal of Organic Chemistry, Permalink to the article: dx.doi.org/10.1002/ejoc.201001479

####

For more information, please click here

Copyright © European Journal of Organic Chemistry

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Chemistry

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

Spintronics just got faster July 20th, 2015

Plantations of nanorods on carpets of graphene capture the Sun's energy July 16th, 2015

Ultra-thin, all-inorganic molecular nanowires successfully compounded July 8th, 2015

Academic/Education

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Discoveries

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project