Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Angstron Invents High Energy Density Graphene-Based Supercapacitor

Abstract:
Angstron has invented a graphene-based supercapacitor with ultra high energy density

Angstron Invents High Energy Density Graphene-Based Supercapacitor

Dayton, OH | Posted on January 6th, 2011

Angstron Materials Inc., has invented a graphene-based supercapacitor with ultra high energy density, a feature that permits storage of a significant amount of energy. As a rechargeable energy storage device, supercapacitors can be charged and discharged more quickly than batteries but have been challenged by their inability to store energy in the amounts required by automotive and electronic applications. Angstron's graphene-based supercapacitor has demonstrated an energy density that exceeds that of commercially available supercapacitors and is comparable with nickel metal hydride batteries.

"A supercapacitor that can store this much energy yet be completely charged or discharged in seconds or minutes offers a number of promising applications for the automotive and electronics industries," said Dr. Bor Jang, co-founder of Angstron.

"This type of supercapacitor is especially attractive for electric vehicle applications where the pairing of supercapacitors with fuel cells or batteries could provide a hybrid system capable of delivering high power acceleration and energy recovery during braking."

The world's largest producer of nano graphene platelets (NGPs), Angstron's single layer graphene has exhibited the highest electrical properties including exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm) when compared to other nanomaterials including carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs). Graphene also offers a very high specific surface area - up to 2675 square meters per gram. By creating curved graphene sheets that resist restacking, Angstron was able to dramatically improve specific surface area and energy density for greater energy storage.

"The risk during the manufacture of the electrode is that the graphene layers could be pushed back together," Dr. Jang explained. "We eliminated the problem of potential restacking by creating curved graphene sheets. This allows us to maintain an optimal surface area for more energy storage. The graphene electrode also enables fast charging and discharging of the supercapacitor. This development has pushed the specific energy density of an electrical double-layer (EDL) graphene-enabled supercapacitor to an unprecedented level of nearly 90 watt hours per kilogram at room temperature and a level of 136 watt hours per kilogram at 80 degrees Celsius."

####

About Angstron Materials
Angstron is the first advanced materials company to offer large quantities of ultra-thin, pristine nano-graphene platelets (NGPs). Angstron is also significantly reducing production cost barriers with its high performance nano-graphene solutions. A new 22,000 square foot manufacturing facility, based in Dayton, Ohio, allows our company to continue its research and development efforts while providing small to large batch processing and production.

For more information, please click here

Contacts:
Ron Beech
Phone: 937-331-9884
Fax: 937-558-0606

Copyright © Angstron Materials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic