Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Angstron Invents High Energy Density Graphene-Based Supercapacitor

Abstract:
Angstron has invented a graphene-based supercapacitor with ultra high energy density

Angstron Invents High Energy Density Graphene-Based Supercapacitor

Dayton, OH | Posted on January 6th, 2011

Angstron Materials Inc., has invented a graphene-based supercapacitor with ultra high energy density, a feature that permits storage of a significant amount of energy. As a rechargeable energy storage device, supercapacitors can be charged and discharged more quickly than batteries but have been challenged by their inability to store energy in the amounts required by automotive and electronic applications. Angstron's graphene-based supercapacitor has demonstrated an energy density that exceeds that of commercially available supercapacitors and is comparable with nickel metal hydride batteries.

"A supercapacitor that can store this much energy yet be completely charged or discharged in seconds or minutes offers a number of promising applications for the automotive and electronics industries," said Dr. Bor Jang, co-founder of Angstron.

"This type of supercapacitor is especially attractive for electric vehicle applications where the pairing of supercapacitors with fuel cells or batteries could provide a hybrid system capable of delivering high power acceleration and energy recovery during braking."

The world's largest producer of nano graphene platelets (NGPs), Angstron's single layer graphene has exhibited the highest electrical properties including exceptional in-plane electrical conductivity (up to ~ 20,000 S/cm) when compared to other nanomaterials including carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs). Graphene also offers a very high specific surface area - up to 2675 square meters per gram. By creating curved graphene sheets that resist restacking, Angstron was able to dramatically improve specific surface area and energy density for greater energy storage.

"The risk during the manufacture of the electrode is that the graphene layers could be pushed back together," Dr. Jang explained. "We eliminated the problem of potential restacking by creating curved graphene sheets. This allows us to maintain an optimal surface area for more energy storage. The graphene electrode also enables fast charging and discharging of the supercapacitor. This development has pushed the specific energy density of an electrical double-layer (EDL) graphene-enabled supercapacitor to an unprecedented level of nearly 90 watt hours per kilogram at room temperature and a level of 136 watt hours per kilogram at 80 degrees Celsius."

####

About Angstron Materials
Angstron is the first advanced materials company to offer large quantities of ultra-thin, pristine nano-graphene platelets (NGPs). Angstron is also significantly reducing production cost barriers with its high performance nano-graphene solutions. A new 22,000 square foot manufacturing facility, based in Dayton, Ohio, allows our company to continue its research and development efforts while providing small to large batch processing and production.

For more information, please click here

Contacts:
Ron Beech
Phone: 937-331-9884
Fax: 937-558-0606

Copyright © Angstron Materials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Products

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

STMicroelectronics’ Semiconductor Chips Contribute to Connected Toothbrush from Oral-B That Sees What You Don’t: Microcontroller and Accelerometer help brushers clean their teeth more effectively October 4th, 2016

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Nanotubes/Buckyballs/Fullerenes

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project