Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bendy tubes get around

Abstract:
Rice-led researchers settle argument over mobility of flexible filaments

Bendy tubes get around

Houston, TX | Posted on January 5th, 2011

Theo Odijk, you win. The professor of biotechnology at Delft University of Technology in the Netherlands has a new best friend in Rice University's Matteo Pasquali.

Together with collaborators at the French National Center for Scientific Research (CNRS), the University of Bordeaux, France, and Vrije University, Amsterdam, the Rice professor and his team have settled a long-standing controversy in the field of polymer dynamics: The researchers proved once and for all that Odijk was correct in proclaiming that a little flexibility goes a long way for stiff filaments in a solution.

The study in the current issue of the journal Science shows that even a small ability to bend gives nanotubes and other tiny, stiff filaments the means to navigate through crowded environments, or even such fixed networks as cell matrices.

The work by Pasquali, a professor in chemical and biomolecular engineering and in chemistry, may bring about new ways to influence the motion of tiny filaments by tailoring their stiffness for a given environment.

Nanotubes are being studied for potential use in all kinds of sensing, even in the seemingly disparate fields of biological applications and oil exploration. In both, the ability of nanotubes and other fine, filamentous particles to move through their environments is critical, Pasquali said.

Understanding the motion of a single, flexible polymer chain in a network has been key to scientific advances by Odijk and others on, for example, the behavior of DNA. The Rice researchers expect their revelation to have no less impact.

Pasquali and lead author Nikta Fakhri, a former graduate student at Rice now doing postdoctoral research at the University of Gottingen, Germany, set out to break the deadlocked theories by Odijk and two other scientists who disagreed on the Brownian motion of stiff filaments in a crowded environment, and whether stiffness itself played any part.

"There's a long-standing, fundamental question: How does this threadlike object move when it gets crowded? It could be crowded because it's in a gel, or because there are a lot of threadlike objects with it -- which to that one object looks like a gel," he said.

Crowding constrains the ability of a filament to travel. Think of trying to get from the back to the front of a crowded bus; it takes a certain amount of agility to weave your way through the packed bodies. "It turns out that with a little flexibility, a filament can explore the space around it much more effectively," Pasquali said.

That becomes important when the goal is to get filaments to find and enter a cellular pore to deliver a dose of medication or to act as a fluorescent sensor.

"If you look at the human body, they say we're made of 60 percent water, but we don't slosh around," Pasquali explained. "That's because the water is trapped in pores. Almost all the water in our body is in gel-like structures: inside our cells, which are laden with filamentous networks, or in the interstitial fluid surrounding these cells. We are a big, squishy, porous medium. We need to understand how the nanoparticles move in this medium."

Pasquali and Fakhri mimicked biological networks by using varying concentrations of agarose gel, a porous material often used as a filter in biochemistry and molecular biology for DNA and proteins. The gel forms a matrix of controllable size through which molecules can move.

Nanotubes served as a stand-in for any type of filament, albeit one whose stiffness can be controlled. Like a PVC pipe in the macro world, nanotubes get stiffer as they get thicker; but even the stiffest tubes can flex a bit with length, and these tubes were thousands of times longer than they were wide.

The study started somewhat serendipitously when co-author Laurent Cognet, a researcher at CNRS and the University of Bordeaux, tried to immobilize nanotubes in agarose gels. He noticed in a failed experiment that the nanotubes moved in a "funny way" and discussed it with Pasquali.

Pasquali asked whether the nanotubes were reptating -- scientist lingo for a snakelike motion -- and Cognet said yes. Fakhri, who was studying the dynamics of nanotubes, traveled to the Bordeaux laboratory of Cognet and co-author Brahim Lounis to capture images of the nanotubes in motion.

The resulting spectroscopic and direct still and video images of 35 fluorescent single-walled nanotubes showed them snaking through the gel, probing pores and paths. The nanotubes, like all filaments, obeyed the rules of thermal-induced Brownian motion; they were pushed and pulled by the ever-changing states of the molecules around them.

The research established that flexibility significantly enhances the nanotubes' ability to navigate around obstacles and speeds up their exploration.

Pasquali said Fakhri doggedly pursued her analysis of the nanotubes' motion through computerized image recognition and motion tracking, as well as old-fashioned pencil-and-paper dynamical analysis. He said his longtime collaborator, co-author Frederick MacKintosh, a theoretical physicist at Vrije University, was a tremendous help. MacKintosh has been studying the dynamics of biological networks for nearly two decades.

Pasquali intends to replace the gel with real rocks to see how nanotubes, which can be used as oil-detecting sensors, move in a more structured environment. "Rocks can be a little more complicated," he said. "The question here is, what can nanotubes do better than nanoparticles? The answer may be that slender nanotubes may interact with electromagnetic fields more strongly than other nanoparticles of the same volume."

The National Science Foundation Center for Biological and Environmental Nanotechnology, the Welch Foundation, the Advanced Energy Consortium, the Région Aquitaine, the Agence National pour la Recherche, the European Research Council and the Dutch Foundation for Fundamental Research on Matter supported the work.

Read the abstract at www.sciencemag.org/content/330/6012/1804.abstract

A video of a reptating nanotube can be viewed at www.sciencemag.org/content/330/6012/1804/suppl/DC1

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Videos/Movies

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Scientists Create Synthetic Membranes That Grow Like Living Cells June 22nd, 2015

PI Planar XY Air Bearing Stage Provides Better Motion Fidelity June 19th, 2015

Toward nanorobots that swim through blood to deliver drugs (video) June 17th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Cellulose from wood can be printed in 3-D June 17th, 2015

Researchers grind nanotubes to get nanoribbons: Rice-led experiments demonstrate solid-state carbon nanotube 'templates' June 15th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Carbon Nanotubes (CNT) Market Trends, Segments And Forecasts To 2022: Grand View Research, Inc June 1st, 2015

Sensors

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Announcements

BASF and Fraunhofer IPMS-CNT jointly develop electronic materials June 30th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Researchers from the UCA, key players in a pioneering study that may explain the origin of several digestive diseases June 30th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Research partnerships

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project