Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > From Molecule to Object

Pushing the limits: A 200×106 Da structurally defined, linear macromolecule (PG5) has a molar mass, cross-section dimension, and cylindrical shape that are comparable to some naturally occurring objects, such as amyloid fibrils or certain plant viruses. The macromolecule is resistant against flattening out on a surface; the picture shows PG5 embracing the tobacco mosaic virus (TMV).
Pushing the limits: A 200×106 Da structurally defined, linear macromolecule (PG5) has a molar mass, cross-section dimension, and cylindrical shape that are comparable to some naturally occurring objects, such as amyloid fibrils or certain plant viruses. The macromolecule is resistant against flattening out on a surface; the picture shows PG5 embracing the tobacco mosaic virus (TMV).

Abstract:
Largest synthetic structure with molecular precision

From Molecule to Object

Weinheim, Germany | Posted on January 4th, 2011

Organic Chemists have always been trying to imitate biology. Although it is possible to make many molecules that imitate biomolecules in terms of structure and function, it remains a challenge to attain the size and form of large biomolecules. An international team led by A. Dieter Schlüter at the ETH Zurich (Switzerland) has now introduced a branched polymer that resembles the tobacco mosaic virus in size and cylindrical form. As the researchers outline in the journal Angewandte Chemie, this is the largest synthetic macromolecule with defined shape and atomic structure reported to date.

Previously, the largest reported synthetic structures with a defined atomic structure were polystyrene polymers with a molecular mass of about 40 million Daltons. However, this value corresponds to a small fraction of the mass of large DNA molecules. Formation of a large synthetic molecule that also has a defined form is much more difficult. For biologists, however, it is routine. Even the simplest organism has a well-defined form, such as the rod-shaped tobacco mosaic virus. For chemists it is a model: a massive molecular ensemble with perfect control over its chemical structure, function, size, and molecular form.

Schlüter and co-workers have now presented a branched polymer that approximates the size and form of the tobacco mosaic virus. Their complex synthesis, which requires 170,000 bond-forming reactions in a single molecule, led to a structurally defined, linear macromolecule with a diameter of about 10 nm and a molecular weight of 200 million Daltons. It thus has a molar mass, cross section, and cylindrical form comparable to the tobacco mosaic virus.

The new macromolecule is a dendronized polymer: it consists of a linear backbone with highly and regularly branched side chains. "This is the biggest synthetic macromolecule with a defined chemical structure and defined form to date," according to Schlüter. "Our experiment is a first step toward the synthesis of molecular objects." A structure is considered to be an object if it keeps its form regardless of its environment, when its interior can be distinguished from the outer environment, and when there is a clear boundary between the two. There are many synthetic nano-objects, however these are not single molecules, but are aggregates of several or many individual molecules.

Author: A. Dieter Schlüter, ETH Zürich (Switzerland), www.polychem.mat.ethz.ch/people/head/dieters

Title: The Largest Synthetic Structure with Molecular Precision: Towards a Molecular Object

Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.201005164

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Chemistry

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Possible Futures

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanobiotechnology

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Researchers first to show that Saharan silver ants can control electromagnetic waves over an extremely broad range of the electromagnetic spectrum—findings may lead to biologically inspired coatings for passive radiative cooling of objects June 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project