Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Philips initiates public-private consortium to accelerate the development of Magnetic Particle Imaging technology

Abstract:
Royal Philips Electronics (NYSE: PHG, AEX: PHI) today announced that it has initiated a German public-private partnership that aims to advance the development of whole-body Magnetic Particle Imaging (MPI) systems and preclinical hybrid systems that combine MPI with Magnetic Resonance Imaging (MRI).

Philips initiates public-private consortium to accelerate the development of Magnetic Particle Imaging technology

Hamburg, Germany | Posted on December 28th, 2010

The German Federal Ministry of Education and Research has made a commitment to provide EUR 10.6 million funding to the consortium partners. The target size of the consortium budget, comprising contributions from the German government and the consortium's public/private partners, is EUR 20.3 million.

Philips is committed to delivering leading-edge imaging solutions to help in the early detection, diagnosis and treatment of disease. Researching future-generation imaging technologies such as MPI underpins the long-term nature of this commitment. MPI was invented by scientists at Philips. It relies on the magnetic properties of iron-oxide nanoparticles (the so-called tracer) that are injected into the bloodstream. An MPI system spatially and quantitatively detects these iron-oxide nanoparticles in order to produce three-dimensional images of physiological processes. The technology has already proved capable of capturing accurate real-time 3D-images of blood flow and heart motion in mice.

"As part of our Open Innovation approach, Philips has initiated the Magnetic Particle Imaging Technology - MAPIT - consortium to accelerate the translation of this innovative new imaging concept into clinical practice," says Michael Kuhn, Vice President Technology Strategy at Philips Healthcare. "Realizing the full potential of MPI to help in elucidating the processes associated with disease requires an integrated approach and a collaborative effort. I am convinced that the multidisciplinary MAPIT consortium is well positioned to advance MPI development in the areas of instrumentation, tracers, and application research."

"Constant improvements in medical imaging technology have significantly boosted advances in healthcare. Based on the level of performance that has been demonstrated in preclinical studies, I consider MPI to be a new imaging modality with the real potential to improve diagnostic imaging in cardiology and oncology, as well as being a tremendous tool for the advancement of molecular imaging in general," says Professor Bernd Hamm, Director of the Department of Radiology and Chair of Radiology at the Charité - Universitätsmedizin Berlin.

Philips and the University of Lübeck, two of the three proposed consortium partners in the instrumentation area, will focus on the development of whole-body MPI demonstrators. The third instrumentation partner, Bruker Corporation (NASDAQ: BRKR), will focus on developing a simultaneous or consecutive preclinical MPI plus MRI capability. This will complement the functional MPI information with morphological information from MRI for the purposes of preclinical imaging. In the area of tracer development, the proposed partners Bayer Schering Pharma AG, Miltenyi Biotec, Charité-Universitätsmedizin Berlin and the Physikalisch-Technische Bundesanstalt (PTB) aim to develop magnetic nanoparticle materials optimized for MPI.

Two principal application areas will be explored by the consortium: functional cardiovascular measurements (such as myocardial perfusion) and image-guidance of cardiovascular interventions (using interventional devices optimized for MPI guidance).

The results achieved at the Philips Research Laboratories in Hamburg (Germany) in the preceding MAGIC (Magnetic Particle Imaging for Cardiovascular Applications) research consortium contributed significantly to the development of MPI. The MAGIC project, which was also funded by the German Federal Ministry of Education and Research, has already resulted in an agreement between Philips and Bruker Biospin regarding the commercialization of MPI scanners for the preclinical market.

####

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified health and well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of “sense and simplicity”. Headquartered in the Netherlands, Philips employs more than 118,000 employees in more than 60 countries worldwide. With sales of US 32.3 billion in 2009, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare.

For more information, please click here

Contacts:
Steve Klink
Tel.: +31 20 5977415
Mobile: +31 6 10888824

Copyright © Royal Philips Electronics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Nanomedicine

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Alliances/Partnerships/Distributorships

'Electronic skin' could improve early breast cancer detection October 29th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE