Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Philips initiates public-private consortium to accelerate the development of Magnetic Particle Imaging technology

Abstract:
Royal Philips Electronics (NYSE: PHG, AEX: PHI) today announced that it has initiated a German public-private partnership that aims to advance the development of whole-body Magnetic Particle Imaging (MPI) systems and preclinical hybrid systems that combine MPI with Magnetic Resonance Imaging (MRI).

Philips initiates public-private consortium to accelerate the development of Magnetic Particle Imaging technology

Hamburg, Germany | Posted on December 28th, 2010

The German Federal Ministry of Education and Research has made a commitment to provide EUR 10.6 million funding to the consortium partners. The target size of the consortium budget, comprising contributions from the German government and the consortium's public/private partners, is EUR 20.3 million.

Philips is committed to delivering leading-edge imaging solutions to help in the early detection, diagnosis and treatment of disease. Researching future-generation imaging technologies such as MPI underpins the long-term nature of this commitment. MPI was invented by scientists at Philips. It relies on the magnetic properties of iron-oxide nanoparticles (the so-called tracer) that are injected into the bloodstream. An MPI system spatially and quantitatively detects these iron-oxide nanoparticles in order to produce three-dimensional images of physiological processes. The technology has already proved capable of capturing accurate real-time 3D-images of blood flow and heart motion in mice.

"As part of our Open Innovation approach, Philips has initiated the Magnetic Particle Imaging Technology - MAPIT - consortium to accelerate the translation of this innovative new imaging concept into clinical practice," says Michael Kuhn, Vice President Technology Strategy at Philips Healthcare. "Realizing the full potential of MPI to help in elucidating the processes associated with disease requires an integrated approach and a collaborative effort. I am convinced that the multidisciplinary MAPIT consortium is well positioned to advance MPI development in the areas of instrumentation, tracers, and application research."

"Constant improvements in medical imaging technology have significantly boosted advances in healthcare. Based on the level of performance that has been demonstrated in preclinical studies, I consider MPI to be a new imaging modality with the real potential to improve diagnostic imaging in cardiology and oncology, as well as being a tremendous tool for the advancement of molecular imaging in general," says Professor Bernd Hamm, Director of the Department of Radiology and Chair of Radiology at the Charité - Universitätsmedizin Berlin.

Philips and the University of Lübeck, two of the three proposed consortium partners in the instrumentation area, will focus on the development of whole-body MPI demonstrators. The third instrumentation partner, Bruker Corporation (NASDAQ: BRKR), will focus on developing a simultaneous or consecutive preclinical MPI plus MRI capability. This will complement the functional MPI information with morphological information from MRI for the purposes of preclinical imaging. In the area of tracer development, the proposed partners Bayer Schering Pharma AG, Miltenyi Biotec, Charité-Universitätsmedizin Berlin and the Physikalisch-Technische Bundesanstalt (PTB) aim to develop magnetic nanoparticle materials optimized for MPI.

Two principal application areas will be explored by the consortium: functional cardiovascular measurements (such as myocardial perfusion) and image-guidance of cardiovascular interventions (using interventional devices optimized for MPI guidance).

The results achieved at the Philips Research Laboratories in Hamburg (Germany) in the preceding MAGIC (Magnetic Particle Imaging for Cardiovascular Applications) research consortium contributed significantly to the development of MPI. The MAGIC project, which was also funded by the German Federal Ministry of Education and Research, has already resulted in an agreement between Philips and Bruker Biospin regarding the commercialization of MPI scanners for the preclinical market.

####

About Royal Philips Electronics
Royal Philips Electronics of the Netherlands (NYSE: PHG, AEX: PHI) is a diversified health and well-being company, focused on improving people’s lives through timely innovations. As a world leader in healthcare, lifestyle and lighting, Philips integrates technologies and design into people-centric solutions, based on fundamental customer insights and the brand promise of “sense and simplicity”. Headquartered in the Netherlands, Philips employs more than 118,000 employees in more than 60 countries worldwide. With sales of US 32.3 billion in 2009, the company is a market leader in cardiac care, acute care and home healthcare, energy efficient lighting solutions and new lighting applications, as well as lifestyle products for personal well-being and pleasure with strong leadership positions in flat TV, male shaving and grooming, portable entertainment and oral healthcare.

For more information, please click here

Contacts:
Steve Klink
Tel.: +31 20 5977415
Mobile: +31 6 10888824

Copyright © Royal Philips Electronics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Alliances/Trade associations/Partnerships/Distributorships

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic