Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles promise cleaner, cheaper desalination

Abstract:
A research project at Flinders University that promises to reduce dramatically the energy and maintenance costs of desalination has received a grant of $388,000 from the National Centre of Excellence in Desalination (NCED).

Nanoparticles promise cleaner, cheaper desalination

South Australia | Posted on December 22nd, 2010

Senator Don Farrell, Parliamentary Secretary for Sustainability and Urban Water, yesterday announced funding of $3 million for 12 projects nationally. Senator Farrell visited Flinders earlier this week to tour the laboratories of the Nanotechnology Desalination Research Project in the School of Chemical and Physical Sciences.

The program's manager, Dr Milena Ginic-Markovic (pictured with Senator Farrell) said the research team was making excellent progress in improving the performance and efficiency of the reverse osmosis process of desalination.

She said that two of the key problems that exist with the current membrane technology are biofouling and mechanical degradation of the membranes.

"The objectives of this three-year project will be to develop a coating for commercially available membranes, which will inhibit biofouling and/or biofoulant growth or reproduction, and to design and synthesise a ‘universal' additive for membrane materials, which will significantly reduce the compaction experienced by current, state-of-the-art polymeric membranes," Dr Ginic-Markovic said.

"By introducing a thin layer of coating and nanoparticles in the membrane system, we can improve the flow of water, reduce the need for cleaning and strengthen the membrane structure."

If the potential reduction of biofouling by 75 per cent is achieved, the energy bill of a desalination plant will be reduced by up 30 per cent, downtime for cleaning could be halved and the life of the membranes extended from two to 10 years.

The NCED, based at Murdoch University, is a Commonwealth Government sponsored consortium of research and industry partners. Its aim is to build national capacity and capability to achieve breakthroughs in fundamental and applied research that will improve desalination at a commercial scale.

####

For more information, please click here

Copyright © Flinders University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Possible Futures

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Water

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

New method for making green LEDs enhances their efficiency and brightness July 30th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic