Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CarbonCarbon nanotubes could be ideal optical antennae

An artistic rendering of carbon nanotubes scattering light. Credit Shivank Garg
An artistic rendering of carbon nanotubes scattering light. Credit Shivank Garg

Abstract:
Just as walkie-talkies transmit and receive radio waves, carbon nanotubes can transmit and receive light at the nanoscale, Cornell researchers have discovered.

By Anne Ju

CarbonCarbon nanotubes could be ideal optical antennae

Ithaca, NY | Posted on December 20th, 2010

Carbon nanotubes, cylindrical rolled-up sheets of carbon atoms, might one day make ideal optical scattering wires -- tiny, mostly invisible antennae with the ability to control, absorb and emit certain colors of light at the nanoscale, according to research led by Jiwoong Park, Cornell assistant professor of chemistry and chemical biology. The study, which includes co-author Garnet Chan, also in chemistry, is published online Dec. 19 in the journal Nature Nanotechnology. The paper's first author is Daniel Y. Joh, a former student in Park's lab.

The researchers used the Rayleigh scattering of light -- the same phenomenon that creates the blue sky -- from carbon nanotubes grown in the lab. They found that while the propagation of light scattering is mostly classical and macroscopic, the color and intensity of the scattered radiation is determined by intrinsic quantum properties. In other words, the nanotubes' simple carbon-carbon bonded molecular structure determined how they scattered light, independent of their shape, which differs from the properties of today's metallic nanoscale optical structures.

"Even if you chop it down to a small scale, nothing will change, because the scattering is fundamentally molecular," Park explained.

They found that the nanotubes' light transmission behaved as a scaled-down version of radio-frequency antennae found in walkie-talkies, except that they interact with light instead of radio waves. The principles that govern the interactions between light and the carbon nanotube are the same as between the radio antenna and the radio signal, they found.

To perform their experiments, the researchers used a methodology developed in their lab that completely eliminates the problematic background signal, by coating the surface of a substrate with a refractive index-matching medium to make the substrate "disappear" optically, not physically. This technique, which allowed them to see the different light spectra produced by the nanotubes, is detailed in another study published in Nano Letters.

The technique also allows quick, easy characterization of a large number of nanotubes, which could lead to ways of growing more uniform batches of nanotubes.

The paper's principal authors are former student Daniel Y. Joh; graduate student Lihong Herman; and Jesse Kinder, a postdoctoral research associate in Chan's lab. Park is a member of the Kavli Institute at Cornell for Nanoscale Science. Both the Nature Nanotechnology and Nano Letters work were supported by the Air Force Office of Scientific Research and the National Science Foundation through the Center for Nanoscale Systems, Cornell Center for Materials Research, Center for Molecular Interfacing and an NSF CAREER grant.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Possible Futures

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Photonics/Optics/Lasers

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project