Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Your genome in minutes: New technology could slash sequencing time

Dr Joshua Edel shows a grid of many chips
Dr Joshua Edel shows a grid of many chips

Abstract:
Imperial scientists are developing technology that could lead to ultrafast DNA sequencing tool within ten years

Your genome in minutes: New technology could slash sequencing time

UK | Posted on December 20th, 2010

Scientists from Imperial College London are developing technology that could ultimately sequence a person's genome in mere minutes, at a fraction of the cost of current commercial techniques.

The researchers have patented an early prototype technology that they believe could lead to an ultrafast commercial DNA sequencing tool within ten years. Their work is described in a study published this month in the journal Nano Letters and it is supported by the Wellcome Trust Translational Award and the Corrigan Foundation.

The research suggests that scientists could eventually sequence an entire genome in a single lab procedure, whereas at present it can only be sequenced after being broken into pieces in a highly complex and time-consuming process. Fast and inexpensive genome sequencing could allow ordinary people to unlock the secrets of their own DNA, revealing their personal susceptibility to diseases such as Alzheimer's, diabetes and cancer. Medical professionals are already using genome sequencing to understand population-wide health issues and research ways to tailor individualised treatments or preventions.

Dr Joshua Edel, one of the authors on the study from the Department of Chemistry at Imperial College London, said: "Compared with current technology, this device could lead to much cheaper sequencing: just a few dollars, compared with $1m to sequence an entire genome in 2007. We haven't tried it on a whole genome yet but our initial experiments suggest that you could theoretically do a complete scan of the 3,165 million bases in the human genome within minutes, providing huge benefits for medical tests, or DNA profiles for police and security work. It should be significantly faster and more reliable, and would be easy to scale up to create a device with the capacity to read up to 10 million bases per second, versus the typical 10 bases per second you get with the present day single molecule real-time techniques."

In the new study, the researchers demonstrated that it is possible to propel a DNA strand at high speed through a tiny 50 nanometre (nm) hole - or nanopore - cut in a silicon chip, using an electrical charge. As the strand emerges from the back of the chip, its coding sequence (bases A, C, T or G) is read by a 'tunnelling electrode junction'. This 2 nm gap between two wires supports an electrical current that interacts with the distinct electrical signal from each base code. A powerful computer can then interpret the base code's signal to construct the genome sequence, making it possible to combine all these well-documented techniques for the first time.

Sequencing using nanopores has long been considered the next big development for DNA technology, thanks to its potential for high speed and high-capacity sequencing. However, designs for an accurate and fast reader have not been demonstrated until now.

Co-author Dr Emanuele Instuli, from the Department of Chemistry at Imperial College London, explained the challenges they faced in this research: "Getting the DNA strand through the nanopore is a bit like sucking up spaghetti. Until now it has been difficult to precisely align the junction and the nanopore. Furthermore, engineering the electrode wires with such dimensions approaches the atomic scale and is effectively at the limit of existing instrumentation. However in this experiment we were able to make two tiny platinum wires into an electrode junction with a gap sufficiently small to allow the electron current to flow between them."

This technology would have several distinct advantages over current techniques, according to co-author, Aleksandar Ivanov from the Department of Chemistry at Imperial College London: "Nanopore sequencing would be a fast, simple procedure, unlike available commercial methods, which require time-consuming and destructive chemical processes to break down and replicate small sections of the DNA molecules to determine their sequence. Additionally, these silicon chips are incredibly durable compared with some of the more delicate materials currently used. They can be handled, washed and reused many times over without degrading their performance."

Dr Tim Albrecht, another author on the study, from the Department of Chemistry at Imperial College London, says: "The next step will be to differentiate between different DNA samples and, ultimately, between individual bases within the DNA strand (ie true sequencing). I think we know the way forward, but it is a challenging project and we have to make many more incremental steps before our vision can be realised."

Notes to Editors

1. "DNA Tunneling Detector Embedded in a Nanopore." As published in Nano Letters, December 2010. For a full list of authors please refer to the paper. For a copy of the paper please visit: pubs.acs.org/doi/abs/10.1021/nl103873a

####

About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperia l College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health S cience Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.

For more information, please click here

Contacts:
Simon Levey
Research Media Officer
Imperial College London

Tel: +44(0)20 7594 6702

Out of hours duty press officer: +44(0)7803 886 248

Copyright © Imperial College London

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Nanomedicine

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Announcements

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Nanobiotechnology

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Rafts on the cell membrane: Researchers from TU Wien (Vienna) shed light on a big secret of cell membranes: The 'lipid rafts', which have been believed to move within the cell membrane, do not really exist April 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project