Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Engineers take plasmon lasers out of deep freeze

Abstract:
Researchers at the University of California, Berkeley, have developed a new technique that allows plasmon lasers to operate at room temperature, overcoming a major barrier to practical utilization of the technology.

Engineers take plasmon lasers out of deep freeze

Berkeley, CA | Posted on December 19th, 2010

The achievement, described Dec. 19 in an advanced online publication of the journal Nature Materials (*), is a "major step towards applications" for plasmon lasers, said the research team's principal investigator, Xiang Zhang, UC Berkeley professor of mechanical engineering and faculty scientist at Lawrence Berkeley National Laboratory.

"Plasmon lasers can make possible single-molecule biodetectors, photonic circuits and high-speed optical communication systems, but for that to become reality, we needed to find a way to operate them at room temperature," said Zhang, who also directs at UC Berkeley the Center for Scalable and Integrated Nanomanufacturing, established through the National Science Foundation's (NSF) Nano-scale Science and Engineering Centers program.

In recent years, scientists have turned to plasmon lasers, which work by coupling electromagnetic waves with the electrons that oscillate at the surface of metals to squeeze light into nanoscale spaces far past its natural diffraction limit of half a wavelength. Last year, Zhang's team reported a plasmon laser that generated visible light in a space only 5 nanometers wide, or about the size of a single protein molecule.

But efforts to exploit such advancements for commercial devices had hit a wall of ice.

"To operate properly, plasmon lasers need to be sealed in a vacuum chamber cooled to cryogenic temperatures as low as 10 kelvins, or minus 441 degrees Fahrenheit, so they have not been usable for practical applications," said Renmin Ma, a post-doctoral researcher in Zhang's lab and co-lead author of the Nature Materials paper.

In previous designs, most of the light produced by the laser leaked out, which required researchers to increase amplification of the remaining light energy to sustain the laser operation. To accomplish this amplification, or gain increase, researchers put the materials into a deep freeze.

To plug the light leak, the scientists took inspiration from a whispering gallery, typically an enclosed oval-shaped room located beneath a dome in which sound waves from one side are reflected back to the other. This reflection allows people on opposite sides of the gallery to talk to each other as if they were standing side by side. (Some notable examples of whispering galleries include the U.S. Capitol's Statuary Hall, New York's Grand Central Terminal, and the rotunda at San Francisco's city hall.)

Instead of bouncing back sound waves, the researchers used a total internal reflection technique to bounce surface plasmons back inside a nano-square device. The configuration was made out of a cadmium sulfide square measuring 45 nanometers thick and 1 micrometer long placed on top of a silver surface and separated by a 5 nanometer gap of magnesium fluoride.

The scientists were able to enhance by 18-fold the emission rate of light, and confine the light to a space of about 20 nanometers, or one-twentieth the size of its wavelength. By controlling the loss of radiation, it was no longer necessary to encase the device in a vacuum cooled with liquid helium. The laser functioned at room temperature.

"The greatly enhanced light matter interaction rates means that very weak signals might be observable," said Ma. "Lasers with a mode size of a single protein are a key milestone toward applications in ultra-compact light source in communications and biomedical diagnostics. The present square plasmon cavities not only can serve as compact light sources, but also can be the key components of other functional building-blocks in integrated circuits, such as add-drop filters, direction couplers and modulators."

Rupert Oulton, a former post-doctoral researcher in Zhang's lab and now a lecturer at Imperial College London, is the other co-lead author of the paper. Other co-authors are Volker Sorger, a UC Berkeley Ph.D. student in mechanical engineering, and Guy Bartal, a former research scientist in Zhang's lab.

The U.S. Air Force Office of Scientific Research and the NSF helped support this work.

(*) www.nature.com/nmat/journal/vaop/ncurrent/full/nmat2919.html

####

For more information, please click here

Contacts:
Media contact:
Sarah Yang
(510) 643-7741


Source:
Xiang Zhang
(510) 225-8559

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyres' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GWs new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanoelectronics

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Announcements

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanobiotechnology

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Photonics/Optics/Lasers

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project