Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Innovative method to fabricate complex 3D microstructures

Illustration of CNT forest growth and capillary forming sequence
Illustration of CNT forest growth and capillary forming sequence

Abstract:
Researchers from imec and the University of Michigan have reported a new technology to fabricate complex three-dimensional microstructures, with intricate bends, twists, and multidirectional textures, starting from vertically aligned carbon nanotubes (CNT). The resulting assemblies have a mechanical stiffness exceeding that of microfabrication polymers, and can be used as molds for the mass production of 3D polymer structures. The method is straightforward, in that it requires only standard two-dimensional patterning and thermal processing at ambient pressure.

Innovative method to fabricate complex 3D microstructures

Leuven, Belgium & Ann Arbor, MI | Posted on December 18th, 2010

Complex surfaces with precisely fabricated nanosized features are needed in, for example, metamaterials, substrates for cell culture and tissue engineering, smart active surfaces, and lab-on-a-chip systems. But existing methods of fabricating 3D microstructures all have their drawbacks, requiring tradeoffs in feature geometry, heterogeneity, resolution, and throughput. This new method, which the researchers have termed ‘capillary forming', promises a path to robust, deterministic fabrication of intricate structures with high mechanical stiffness.

The approach to capillary forming of CNTs starts with patterning a catalyst layer on a silicon wafer, using optical lithography. Second, that layer is used to grow microstructures made of vertically aligned CNTs - CNT forests - through thermal chemical vapor deposition (CVD) at atmospheric pressure. Next, a solvent such as acetone is condensed on the substrate. This is done by positioning the substrate, with the CNT patterns facing downward, over a container with the boiling solvent. The solvent vapor rises through the container and condenses on the substrate. Due to capillary rise, the solvent is drawn into each CNT microstructure independently. After the substrate has been exposed to the vapor for the desired duration, it is removed from the container. As a result of the process of infiltration and evaporation of the solvent liquid, capillary forces will bundle the CNTs, resulting in a transformation of the initial 2D geometries into intricate 3D structures.

With this method, it is possible to construct robust 3D assemblies of filamentary nanostructures. The researchers have demonstrated this method through the fabrication of a library of diverse CNT microarchitectures. A bending motion, for example, can be combined into twisting and bridge-shaped architectures which cannot be made using standard lithography. This new approach to manipulate nanoscale filaments using local mechanical deformations makes it easier to deterministically design and fabricate 3D microarchitectures with complex geometries as well as nanotextured surfaces. Yet it only requires a standard patterning and thermal processing at ambient pressure.

This work received the Robert M. Caddell award for outstanding research in materials and manufacturing.

Michael De Volder, Sameh H. Tawfick, Sei Jin Park, Davor Copic, Zhouzhou Zhao, Wei Lu, A. John Hart, "Diverse 3D Microarchitectures Made by Capillary Forming of Carbon Nanotubes", Advanced Materials Volume 22, Issue 39, pages 4384-4389, October 15, 2010.

####

For more information, please click here

Contacts:
Imec:
Katrien Marent
Director of External Communications
T: +32 16 28 18 80
M: +32 474 30 28 66


For Imec:
Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975
M: +1 408 529 4210

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanomedicine

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Announcements

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project