Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Unraveling Alzheimer's: Simple small molecules could untangle complex disease

Small Molecules for Metal-Amyloid Species in the Brain.  Credit: Mi Hee Lim and Joseph J. Braymer
Small Molecules for Metal-Amyloid Species in the Brain. Credit: Mi Hee Lim and Joseph J. Braymer

Abstract:
New molecular tools developed at the University of Michigan show promise for "cleansing" the brain of amyloid plaques, implicated in Alzheimer's disease.

Unraveling Alzheimer's: Simple small molecules could untangle complex disease

Ann Arbor, MI | Posted on December 18th, 2010

A hallmark of Alzheimer's disease—a neurodegenerative disease with no cure—is the aggregation of protein-like bits known as amyloid-beta peptides into clumps in the brain called plaques. These plaques and their intermediate messes can cause cell death, leading to the disease's devastating symptoms of memory loss and other mental difficulties.

The mechanisms responsible for the formation of these misfolded proteins and their associations with Alzheimer's disease are not entirely understood, but it's thought that copper and zinc ions are somehow involved.

The research, led by assistant professor Mi Hee Lim, was published online Dec. 3 in the Proceedings of the National Academy of Science.

In earlier work, Lim and her team developed dual-purpose molecular tools that both grab metal ions and interact with amyloid-beta. The researchers went on to show that in solutions with or without living cells, the molecules were able to regulate copper-induced amyloid-beta aggregation, not only disrupting the formation of clumps, but also breaking up clumps that already had formed.

Building upon that first generation of compounds, Lim and lab members Jung-Suk Choi and Joseph Braymer now report a second generation of compounds that are more stable in biological environments. The researchers tested one of those compounds, described in the PNAS paper, in homogenized brain tissue samples from Alzheimer's disease patients.

"We found that our compound is capable of disassembling the misfolded amyloid clumps to form smaller amyloid pieces, which might be 'cleansed' from the brain more easily, demonstrating a therapeutic application of our compound," said Lim, who has joint appointments in the Life Sciences Institute and the Department of Chemistry. In addition, preliminary tests show that the bi-functional small molecules have a strong potential to cross the blood-brain barrier, the barricade of cells that separates brain tissue from circulating blood, protecting the brain from harmful substances in the bloodstream.

"Crossing this barrier is essential for any treatment like this to be successful," Lim said.

Next steps include more intensive testing of the new compounds for diagnostic and therapeutic properties.

Lim and her team collaborated with Ayyalusamy Ramamoorthy, professor of chemistry and biophysics on this work, with funding from the U-M Horace H. Rackham School of Graduate Studies, the Alzheimer's Art Quilt Initiative, and the National Institutes of Health.

####

For more information, please click here

Contacts:
Jennifer Farina
Phone: (734) 615-4862

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Possible Futures

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanobiotechnology

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project