Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Unraveling Alzheimer's: Simple small molecules could untangle complex disease

Small Molecules for Metal-Amyloid Species in the Brain.  Credit: Mi Hee Lim and Joseph J. Braymer
Small Molecules for Metal-Amyloid Species in the Brain. Credit: Mi Hee Lim and Joseph J. Braymer

Abstract:
New molecular tools developed at the University of Michigan show promise for "cleansing" the brain of amyloid plaques, implicated in Alzheimer's disease.

Unraveling Alzheimer's: Simple small molecules could untangle complex disease

Ann Arbor, MI | Posted on December 18th, 2010

A hallmark of Alzheimer's disease—a neurodegenerative disease with no cure—is the aggregation of protein-like bits known as amyloid-beta peptides into clumps in the brain called plaques. These plaques and their intermediate messes can cause cell death, leading to the disease's devastating symptoms of memory loss and other mental difficulties.

The mechanisms responsible for the formation of these misfolded proteins and their associations with Alzheimer's disease are not entirely understood, but it's thought that copper and zinc ions are somehow involved.

The research, led by assistant professor Mi Hee Lim, was published online Dec. 3 in the Proceedings of the National Academy of Science.

In earlier work, Lim and her team developed dual-purpose molecular tools that both grab metal ions and interact with amyloid-beta. The researchers went on to show that in solutions with or without living cells, the molecules were able to regulate copper-induced amyloid-beta aggregation, not only disrupting the formation of clumps, but also breaking up clumps that already had formed.

Building upon that first generation of compounds, Lim and lab members Jung-Suk Choi and Joseph Braymer now report a second generation of compounds that are more stable in biological environments. The researchers tested one of those compounds, described in the PNAS paper, in homogenized brain tissue samples from Alzheimer's disease patients.

"We found that our compound is capable of disassembling the misfolded amyloid clumps to form smaller amyloid pieces, which might be 'cleansed' from the brain more easily, demonstrating a therapeutic application of our compound," said Lim, who has joint appointments in the Life Sciences Institute and the Department of Chemistry. In addition, preliminary tests show that the bi-functional small molecules have a strong potential to cross the blood-brain barrier, the barricade of cells that separates brain tissue from circulating blood, protecting the brain from harmful substances in the bloodstream.

"Crossing this barrier is essential for any treatment like this to be successful," Lim said.

Next steps include more intensive testing of the new compounds for diagnostic and therapeutic properties.

Lim and her team collaborated with Ayyalusamy Ramamoorthy, professor of chemistry and biophysics on this work, with funding from the U-M Horace H. Rackham School of Graduate Studies, the Alzheimer's Art Quilt Initiative, and the National Institutes of Health.

####

For more information, please click here

Contacts:
Jennifer Farina
Phone: (734) 615-4862

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nanomaterial maintains conductivity in three dimensions: International team seamlessly bonds CNTs and graphene September 5th, 2015

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

Possible Futures

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanomedicine

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Announcements

New nanomaterial maintains conductivity in three dimensions: International team seamlessly bonds CNTs and graphene September 5th, 2015

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Tools

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanobiotechnology

Making nanowires from protein and DNA September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic