Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NO2 gas sensor based on vertically-grown InAs nanowires

Figure gassensor: Artist impression of the NO2 gas sensor, showing the contacts and InAs nanowires
Figure gassensor: Artist impression of the NO2 gas sensor, showing the contacts and InAs nanowires

Abstract:
Imec and Holst Centre have developed an innovative sensor for measuring ultra-low concentrations of NO2. Such sensors are important for applications that monitor environmental pollution resulting from traffic, and in general, from all combustion motors. The sensor's active components are arrays of grown vertical InAs nanowires. A typical sensor would contain 500 such nanowires, and will be sensitive to NO2 concentrations of fewer than 100ppb at room temperature.

NO2 gas sensor based on vertically-grown InAs nanowires

Leuven, Belgium | Posted on December 18th, 2010

The sensor's nanowires are about 3ìm in length and 50-100nm wide. They are made from InAs, which is well-suited for gas sensing, because it has an electron accumulation layer at the surface, making it sensitive to accumulated charges. Gas molecules adsorb onto the nanowires, changing the current that is flowing through the nanowires.

The semiconductor nanowires are contacted ohmically using an air bridge construction (see picture). This construction has as advantage that it leaves the nanowire surface free for gas adsorption. Because of the small bandgap of InAs, it's fairly easy to fabricate these ohmic contacts. The sensor can be reset, simply by applying a stronger current.

The new sensor boasts several breakthroughs in nanowire technology. A key characteristic is that the vertical nanowires are electrically contacted in the locations on the substrate where they are grown. In other, comparable nanowire sensors, the nanowires have to be placed on the substrate after being grown elsewhere. Another major benefit of these sensing nanowires is that they function without heating, making them much more power-efficient.

The new gas sensor has been developed in Holst Centre's program for ultra-low-power sensors. In a next step, the researchers will increase the sensitivity of the sensor, as well as its detection selectivity. One goal is, for example, to make a sensor that can distinguish between NO2 and NO. Also, new manufacturing techniques are investigated, with the aim to use cost-effective silicon substrates for high-yield solutions.

####

About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (imec vzw supported by the Flemish Government), imec the Netherlands (Stichting imec Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (imec Taiwan Co.). and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
Imec:
Katrien Marent
Director of External Communications
T: +32 16 28 18 80
M: +32 474 30 28 66


For Imec:
Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975
M: +1 408 529 4210

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Products

Aculon Launches NanoProof Series for PCB Waterproofing July 20th, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Industrial Nanotech, Inc. Announces Launch of Heat Shield(TM) EPX4 Thermal Insulation and Chemical Resistant Coating June 12th, 2015

Academic/Education

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Sensors

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Environment

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Use Gas Sensor to Detect Hydrogen July 14th, 2015

Automotive/Transportation

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Molecular fuel cell catalysts hold promise for efficient energy storage July 16th, 2015

Nanocomposites Improve Tire Properties July 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project