Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Microsensors Offer First Look at Whether Cell Mass Affects Growth Rate

Abstract:
Researchers at the University of Illinois, Urbana-Champaign, have developed a new kind of microsensor to answer one of the weightiest questions in biology - the relationship between cell mass and growth rate.

Microsensors Offer First Look at Whether Cell Mass Affects Growth Rate

Bethesda, MD | Posted on December 17th, 2010

The team, led by Rashid Bashir, published its results in the Proceedings of the National Academy of Sciences. Dr. Bashir is the co-principal investigator of one of six Cancer Nanotechnology Training Centers funded by the National Cancer Institute Alliance for Nanotechnology in Cancer.

Biologists have long questioned whether cells grow at a fixed rate or whether growth accelerates as mass increases. But the mechanics of cellular growth and division are important not only for basic biology, but also for diagnostics, drug development, tissue engineering and understanding cancer. For example, documenting these processes could help identify specific drug targets to slow or stop the uncontrolled growth of cancer cells.

Previous studies have used aggregate populations of cells, making it impossible to determine patterns of individual cell growth. With their small, sensitive microsensors, Dr. Bashir and his colleagues were able to track individual colon cancer cells' masses and divisions over time. The investigators found that the cells they studied did grow faster as they grew heavier, rather than growing at the same rate throughout the cell cycle.

Each microsensor is a tiny, suspended platform made in silicon on a chip. The suspended scale vibrates at a particular frequency, which changes when mass is added. As a cell's mass increases, the sensor's resonant frequency goes down. "As you make the structure smaller and smaller, it becomes more sensitive to the mass that's placed on it," Dr. Bashir said. "A cell is a few nanograms in mass or smaller. If we can make our sensor small enough, then it becomes sensitive to cell mass."

The researchers created an array of hundreds of sensors on a chip. They can culture cells on the chip in much the same way that scientists grow cells in a dish. Thus, they can collect data from many cells at once, while still recording individual cellular measurements. Another advantage of these microsensors is the ability to image cells with microscopes while cells grow on the sensors. Researchers can track the cells visually, opening the possibilities of tracking various cellular processes in conjunction with changes in mass. "Imaging acts as a control. You can actually watch the cell divide and grow and correlate that to your measurements. It really validates what you have," explained Dr. Bashir. "There are lots of optical measurements that now you can integrate with mass sensing."

Next, the researchers plan to extend the study to other cell lines, and explore more optical measurements and fluorescent markers. "These technologies can also be used for diagnostic purposes, or for screening. For example, we could study cell growth and mass and changes in the cell structure based on drugs or chemicals," Bashir said.

This work is detailed in a paper titled, "Measurement of adherent cell mass and growth." An abstract of this paper is available at the journal's website.

View abstract at www.pnas.org/content/107/48/20691

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Nanomedicine

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Sensors

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Announcements

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Nanobiotechnology

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE