Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microsensors Offer First Look at Whether Cell Mass Affects Growth Rate

Abstract:
Researchers at the University of Illinois, Urbana-Champaign, have developed a new kind of microsensor to answer one of the weightiest questions in biology - the relationship between cell mass and growth rate.

Microsensors Offer First Look at Whether Cell Mass Affects Growth Rate

Bethesda, MD | Posted on December 17th, 2010

The team, led by Rashid Bashir, published its results in the Proceedings of the National Academy of Sciences. Dr. Bashir is the co-principal investigator of one of six Cancer Nanotechnology Training Centers funded by the National Cancer Institute Alliance for Nanotechnology in Cancer.

Biologists have long questioned whether cells grow at a fixed rate or whether growth accelerates as mass increases. But the mechanics of cellular growth and division are important not only for basic biology, but also for diagnostics, drug development, tissue engineering and understanding cancer. For example, documenting these processes could help identify specific drug targets to slow or stop the uncontrolled growth of cancer cells.

Previous studies have used aggregate populations of cells, making it impossible to determine patterns of individual cell growth. With their small, sensitive microsensors, Dr. Bashir and his colleagues were able to track individual colon cancer cells' masses and divisions over time. The investigators found that the cells they studied did grow faster as they grew heavier, rather than growing at the same rate throughout the cell cycle.

Each microsensor is a tiny, suspended platform made in silicon on a chip. The suspended scale vibrates at a particular frequency, which changes when mass is added. As a cell's mass increases, the sensor's resonant frequency goes down. "As you make the structure smaller and smaller, it becomes more sensitive to the mass that's placed on it," Dr. Bashir said. "A cell is a few nanograms in mass or smaller. If we can make our sensor small enough, then it becomes sensitive to cell mass."

The researchers created an array of hundreds of sensors on a chip. They can culture cells on the chip in much the same way that scientists grow cells in a dish. Thus, they can collect data from many cells at once, while still recording individual cellular measurements. Another advantage of these microsensors is the ability to image cells with microscopes while cells grow on the sensors. Researchers can track the cells visually, opening the possibilities of tracking various cellular processes in conjunction with changes in mass. "Imaging acts as a control. You can actually watch the cell divide and grow and correlate that to your measurements. It really validates what you have," explained Dr. Bashir. "There are lots of optical measurements that now you can integrate with mass sensing."

Next, the researchers plan to extend the study to other cell lines, and explore more optical measurements and fluorescent markers. "These technologies can also be used for diagnostic purposes, or for screening. For example, we could study cell growth and mass and changes in the cell structure based on drugs or chemicals," Bashir said.

This work is detailed in a paper titled, "Measurement of adherent cell mass and growth." An abstract of this paper is available at the journal's website.

View abstract at www.pnas.org/content/107/48/20691

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Govt.-Legislation/Regulation/Funding/Policy

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Possible Futures

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Academic/Education

Luleĺ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanomedicine

The nanoscopic structure that locks up our genes January 16th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Rice University lab modifies nanoscale virus to deliver peptide drugs to cells, tissues January 8th, 2018

SNUH team develops new nanomaterial for thermal cancer therapy January 5th, 2018

Sensors

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Announcements

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Nanobiotechnology

The nanoscopic structure that locks up our genes January 16th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Rice University lab modifies nanoscale virus to deliver peptide drugs to cells, tissues January 8th, 2018

Novel nanomedicine inhibits progression of pancreatic cancer in mice: Survival rates in pancreatic cancer linked to inverse correlation between specific oncogene and tumor suppressant, Tel Aviv University researchers say January 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project