Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon-Nested Gadonanotubes Promise Big

a–c, Schematic showing Magnevist (a), GFs (b) and debundled GNTs (c). d,e, Scanning electron micrographs of quasi-hemispherical (H-SiMP: diameter, 1.6 µm; thickness, ~0.6 µm) (d) and discoidal (D-SiMP: diameter, 1.0 µm; thickness, 0.4 µm). Credit Nature
a–c, Schematic showing Magnevist (a), GFs (b) and debundled GNTs (c). d,e, Scanning electron micrographs of quasi-hemispherical (H-SiMP: diameter, 1.6 µm; thickness, ~0.6 µm) (d) and discoidal (D-SiMP: diameter, 1.0 µm; thickness, 0.4 µm). Credit Nature

Abstract:
A porous, disk-shaped "nest" for nanotubes may help magnetic resonance imaging become better than ever at finding evidence of cancer if the results of research led by investigators at Rice University are any indication of future success.

Silicon-Nested Gadonanotubes Promise Big

Bethesda, MD | Posted on December 17th, 2010

This research team, which also included colleagues from other Texas Medical Center institutions, as well as those in Colorado, Italy and Switzerland, have developed a general method for trapping paramagnetic nanoparticles inside a silicon particle that, when injected into a patient's bloodstream, would make the nanoparticles up to 50 times more effective at spotting tumors or other signs of disease. Paramagnetic contrast agents "light up" damaged tissue in the body in images produced by MRI instruments.

"Making MRIs better is no small matter," said Lon Wilson, one of three senior co-authors of the research paper published in the journal Nature Nanotechnology. The other senior co-authors include Mauro Ferrari, from the Methodist Hospital Research Institute, and Paolo Decuzzi, of the University of Texas Health Sciences Center at Houston. Drs. Ferrari and Decuzzi are members of the Texas Center for Cancer Nanomedicine, one of nice Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute's Alliance for Nanotechnology in Cancer.

In 2007, 28 million MRI scans were performed in the United States, and contrast agents were used in nearly 45 percent of them. "MRI is one of the most powerful medical tools for imaging, if not the most powerful," said Dr. Wilson. "It's not invasive, it's not ionizing harmful radiation, and the resolution is the best you can get in medical imaging." MRI's main limitation is its sensitivity. "So anything you can do to improve performance and increase sensitivity is a big deal -- and that's what this does."

A nano-sized slice of silicon shaped like a hockey puck served as a delivery device for contrast agents in the study. Pores that were mere nanometers long and wide were created in the discs, called silicon microparticles, or SiMPs. Three types of contrast agents were drawn into the pores. Magnevist, a common contrast agent used worldwide, was one; the others were gadofullerenes and gadonanotubes. All three of these contrast agents chemically sequester the toxic element gadolinium to make it safe for injection.

MRIs work by manipulating hydrogen atoms in water, which interact and align with the applied magnetic field from the instrument. The hydrogen atoms are then allowed to return to their original magnetic state, a process called relaxation. In the presence of the paramagnetic gadolinium ion, the atoms' relaxation time is shortened, making these regions brighter against the background under MRI.

SiMPs are small and when they trap both water molecules and bundles of nanotubes containing gadolinium, the protons appear much brighter in an MR image. Because SiMPs keep their form for up to 24 hours before dissolving into harmless silicic acid, the molecules can be imaged for a long time. The trick, though, is getting them to places in the body that doctors and technicians want to see. Wilson said SiMPs are designed to escape the bloodstream, where they leak and aggregate at the sites of tumors and lesions. "Spherical particles, at least in mathematical models, flow down the center of the vasculature," he said. "These particles are designed to hug the wall. When they encounter a leaky area like a cancer tumor, they can easily get out."

The encapsulation within SiMPs enhanced the performance of all three contrast agents, but SiMPs with gadonanotubes (carbon nanotubes that contain bundles of gadolinium ions) showed the best results. "The performance was enhanced beyond what we had imagined," he said. SiMPs may also be functionalized with peptides that target cancer and other cells. SiMPs that contain contrast agents and anticancer agents could potentially be tracked as they home in on tumors, where the drugs would be released as the silicon dissolves.

This work is detailed in paper titled, "Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast." An abstract of this paper is available at the journal's website.

View abstract at www.nature.com/nnano/journal/v5/n11/full/nnano.2010.203.html

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Nanomedicine

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project