Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study Improves Understanding of Method for Creating Multi-Metal Nanoparticles

This diagram shows how researchers created the core/shell nanoparticles, and alloy nanoparticles, from gold and silver.
This diagram shows how researchers created the core/shell nanoparticles, and alloy nanoparticles, from gold and silver.

Abstract:
A new study from researchers at North Carolina State University sheds light on how a technique that is commonly used for making single-metal nanoparticles can be extended to create nanoparticles consisting of two metals - and that have tunable properties. The study also provides insight into the optical properties of some of these nanoparticles.

Study Improves Understanding of Method for Creating Multi-Metal Nanoparticles

Raleigh, NC | Posted on December 16th, 2010

Tuning the optical properties of nanoparticles is of interest for applications such as security technology, and for use in making chemical reactions more efficient - which has multiple industrial and environmental applications.

The researchers created core/shell nanoparticles with a gold core and silver shell, as well as alloy nanoparticles, which mix the gold and silver. The researchers also characterized the optical properties of these nanoparticles. "Silver and gold have unique optical properties arising from their specific interactions with the electric field of light," says Dr. Joe Tracy, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the study. "By manipulating the ratio of the metals, and whether the nanoparticles have core/shell or alloy structures, we can alter their optical properties with control."

The researchers synthesized the nanoparticles using a technique called "digestive ripening." The technique has been used to create single-metal particles for approximately a decade, but there have been limited studies of core/shell and alloy nanoparticles created using digestive ripening. However, the comprehensive nature of this study may make it more common.

"This study, along with related work by others, shows that digestive ripening is a viable method for creating multi-component metal nanoparticles. We used gold and silver, but the same principles would likely apply to other metals," Tracy says. "Our detailed evaluation of this synthetic approach should help other researchers explore other kinds of binary metal nanoparticles."

Digestive ripening relies on the use of ligands, which are small organic molecules with parts that bond directly to metals. The ligands are usually anchored to the metal cores of the nanoparticles and prevent the nanoparticles from clumping together, which allows them to be suspended in solution. Digestive ripening occurs when the ligands are able to transport metal atoms from the core of one nanoparticle to another - resulting in a more homogenous size distribution among the nanoparticles.

The researchers used digestive ripening to create a solution of gold nanoparticles of similar size. When they introduced silver acetate into the solution, the ligands transported silver atoms to the surfaces of the gold nanoparticles, resulting in nanoparticles with gold cores and silver shells.

Researchers then transferred the nanoparticles into a second solution, containing a different ligand. Heating this second solution to 250 degrees Celsius caused the metals to diffuse into each other - creating nanoparticles made of a gold-silver alloy.

The researchers also created gold-silver alloy nanoparticles by skipping the shell-creation step, introducing silver acetate into the second solution, and raising the temperature to 250 degrees Celsius. This "shortcut" method has the benefit of simplifying control over the gold-to-silver ratio of the alloy.

The paper, "Synthesis of Au(core)/Ag(shell) Nanoparticles and their Conversion to AuAg Alloy Nanoparticles," was published online Dec. 13 by the journal Small. The research was funded by the National Science Foundation and NC State. The lead author of the paper is Matthew Shore, who was an undergraduate at NC State when the research was done. Co-authors include Tracy, NC State Ph.D. student Aaron Johnston-Peck, former NC State postdoc Dr. Junwei Wang, and University of North Carolina at Chapel Hill assistant professor Dr. Amy Oldenburg.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

Note to Editors: The study abstract follows.

"Synthesis of Au(core)/Ag(shell) Nanoparticles and their Conversion to AuAg Alloy Nanoparticles"

Authors: Matthew S. Shore, Junwei Wang, Aaron C. Johnston-Peck, Joseph B.
Tracy, North Carolina State University; Amy L. Oldenburg, University of North Carolina at Chapel Hill

Published: online Dec. 13, in Small

Abstract: Au(core)/Ag(shell) and AuAg alloy nanoparticles are synthesized with stoichiometric control through digestive ripening, a potentially general approach for synthesizing core/shell and alloy nanoparticles. AuAg alloy nanoparticles are obtained by annealing Au(core)/Ag(shell) nanoparticles. These bimetal nanoparticles have a tunable surface plasmon resonance absorbance and of interest for use in catalysis and as taggants for security applications.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Joe Tracy
919.515.2623

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Chemistry

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Possible Futures

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Announcements

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Homeland Security

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Environment

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

A more complete picture of the nano world August 24th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Industrial

Researchers printed graphene-like materials with inkjet August 17th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

3-D-printed jars in ball-milling experiments June 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project