Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA bioengineers discover how particles self-assemble in flowing fluids

A self-assembled lattice of 10-micrometer diameter particles flowing through a microfluidic channel.
A self-assembled lattice of 10-micrometer diameter particles flowing through a microfluidic channel.

Abstract:
Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

By Matthew Chin and Wileen Wong Kromhout

UCLA bioengineers discover how particles self-assemble in flowing fluids

Los Angeles, CA | Posted on December 15th, 2010

From atomic crystals to spiral galaxies, self-assembly is ubiquitous in nature. In biological processes, self-assembly at the molecular level is particularly prevalent.

Phospholipids, for example, will self-assemble into a bilayer to form a cell membrane, and actin, a protein that supports and shapes a cell's structure, continuously self-assembles and disassembles during cell movement.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

This self-assembly behavior was unexpected, the researchers said, for such a simple system containing only particles, fluid and a conduit through which these elements flow. The particles formed lattice-like structures due to a unique combination of hydrodynamic interactions.

The research, published online today in the journal Proceedings of the National Academy of Sciences, was led by UCLA postdoctoral scholar Wonhee Lee and UCLA assistant professor of bioengineering Dino Di Carlo.

The research team discovered the mechanism that leads to this self-assembly behavior through a series of careful experiments and numerical simulations. They found that continuous disturbance of the fluid induced by each flowing and rotating particle drives neighboring particles away, while migration of particles to localized streams due to the momentum of the fluid acts to stabilize the spacing between particles at a finite distance. In essence, the combination of repulsion and localization leads to an organized structure.

Once they understood the mechanism, the team developed microchannels that allowed for "tuning" of the spatial frequency of particles within an organized particle train. They found that by simply adding short regions of expanded channel width, the particles could be induced to self-assemble into different structures in a controllable and potentially programmable way.

"Programmable control of flowing microscale particles may be important in opening up new capabilities in biomedicine, materials synthesis and computation, similar to how improved control of flowing electrons has enabled a revolution in computing and communication," Di Carlo said.

For example, controlling the positions of microscale bioparticles, such as cells in flowing channels, is important for the operation of blood analysis and counting diagnostic systems. In addition, improving the uniformity of cell concentrations entering the microscale volume of a print head can enable burgeoning fields such as "tissue printing," in which single cells in a polymer ink are sequentially positioned to form a functional tissue architecture, such as the cylindrical lumen of a blood vessel.

More complete control of lattices of particles may also allow tunable manufacturing of optical or acoustic metamaterials that interact uniquely with light and sound waves based on the arrangement of the embedded particles, the researchers said.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, UCLA Engineering is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Matthew Chin
310-206-0680


Wileen Wong Kromhout
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Self Assembly

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New conductive ink for electronic apparel June 25th, 2015

Giving atoms their marching orders: Highly homogeneous nanotube enforces single-file flow of atoms in gas diffusion. Direct comparison of single-file and Fickian diffusion possible with new system described by researchers at the University of South Carolina and University of Flor June 24th, 2015

n-tech Research Issues Report on Smart Coatings Market, Free Download Available on Firm’s Website June 24th, 2015

Nanomedicine

Sensor technology can improve accuracy of prostate cancer diagnosis, research shows July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project