Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny Channels Carry Big Information

Schematic of a 2-nm nanochannel device, with two microchannels, ten nanochannels and four reservoirs. (Image courtesy of Chuanhua Duan)
Schematic of a 2-nm nanochannel device, with two microchannels, ten nanochannels and four reservoirs. (Image courtesy of Chuanhua Duan)

Abstract:
Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to fabricate nanochannels that are only two nanometers (2-nm) in size.

Tiny Channels Carry Big Information

Berkeley, CA | Posted on December 15th, 2010

They say it's the little things that count, and that certainly holds true for the channels in transmembrane proteins, which are small enough to allow ions or molecules of a certain size to pass through, while keeping out larger objects. Artificial fluidic nanochannels that mimic the capabilities of transmembrane proteins are highly prized for a number of advanced technologies. However, it has been difficult to make individual artificial channels of this size - until now.

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to fabricate nanochannels that are only two nanometers (2-nm) in size, using standard semiconductor manufacturing processes. Already they've used these nanochannels to discover that fluid mechanics for passages this small are significantly different not only from bulk-sized channels, but even from channels that are merely 10 nanometers in size.

"We were able to study ion transport in our 2-nm nanochannels by measuring the time and concentration dependence of the ionic conductance," says Arun Majumdar, Director of DOE's Advanced Research Projects Agency - Energy (ARPA-E), who led this research while still a scientist at Berkeley Lab. "We observed a much higher rate of proton and ionic mobility in our confined hydrated channels - up to a fourfold increase over that in larger nanochannels (10-to-100 nm). This enhanced proton transport could explain the high throughput of protons in transmembrane channels."

Majumdar is the co-author with Chuanhua Duan, a member of Majumdar's research group at the University of California (UC) Berkeley, of a paper on this work, which was published in the journal Nature Nanotechnlogy. The paper is titled "Anomalous ion transport in 2-nm hydrophilic nanochannels."

In their paper, Majumdar and Duan describe a technique in which high-precision ion etching is combined with anodic bonding to fabricate channels of a specific size and geometry on a silicon-on-glass die. To prevent the channel from collapsing under the strong electrostatic forces of the anodic bonding process, a thick (500 nm) oxide layer was deposited onto the glass substrate.

"This deposition step and the following bonding step guaranteed successful channel sealing without collapsing," says Duan. "We also had to choose the right temperature, voltage and time period to ensure perfect bonding. I compare the process to cooking a steak, you need to choose the right seasoning as well as the right time and temperature. The deposition of the oxide layer was the right seasoning for us."

The nanometer-sized channels in transmembrane proteins are critical to controlling the flow of ions and molecules across the external and internal walls of a biological cell, which, in turn, are critical to many of the biological processes that sustain the cell. Like their biological counterparts, fluidic nanochannels could play critical roles in the future of fuel cells and batteries.

"Enhanced ion transport improves the power density and practical energy density of fuel cells and batteries," Duan says. "Although the theoretical energy density in fuel cells and batteries is determined by the active electrochemical materials, the practical energy density is always much lower because of internal energy loss and the usage of inactive components. Enhanced ion transport could reduce internal resistance in fuel cells and batteries, which would reduce the internal energy loss and increase the practical energy density."

The findings by Duan and Majumdar indicate that ion transport could be significantly enhanced in 2-nm hydrophilic nanostructures because of their geometrical confinements and high surface-charge densities. As an example, Duan cites the separator, the component placed between the between the cathode and the anode in batteries and fuel cells to prevent physical contact of the electrodes while enabling free ionic transport.

"Current separators are mostly microporous layers consisting of either a polymeric membrane or non-woven fabric mat," Duan says. "An inorganic membrane embedded with an array of 2-nm hydrophilic nanochannels could be used to replace current separators and improve practical power and energy density."

The 2-nm nanochannels also hold promise for biological applications because they have the potential to be used to directly control and manipulate physiological solutions. Current nanofluidic devices utilize channels that are 10-to-100 nm in size to separate and manipulate biomolecules. Because of problems with electrostatic interactions, these larger channels can function with artificial solutions but not with natural physiological solutions.

"For physiological solutions with typical ionic concentrations of approximately 100 millimolars, the Debye screening length is 1 nm," says Duan. "Since electrical double layers from two-channel surfaces overlap in our 2-nm nanochannels, all current biological applications found in larger nanochannels can be transferred to 2-nm nanochannels for real physiological media."

The next step for the researchers will be to study the transport of ions and molecules in hydrophilic nanotubes that are even smaller than 2-nm. Ion transport is expected to be even further enhanced by the smaller geometry and stronger hydration force.

"I am developing an inorganic membrane with embedded sub-2 nm hydrophilic nanotube array that will be used to study ion transport in both aqueous and organic electrolytes,' Duan says. "It will also be developed as a new type of separator for lithium-ion batteries."

This work was supported by DOE's Office of Science, plus the Center for Scalable and Integrated Nanomanufacturing, and the Center of Integrated Nanomechanical Systems at UC Berkeley.

Additional Information

For more information about the research of Arun Majumdar visit http://www.me.berkeley.edu/faculty/majumdar/

For more information about ARPA-E visit the Website at arpa-e.energy.gov/

For more information about the Center for Scalable and Integrated Nanomanufacturing (SINAM) visit www.sinam.org/

For more information about the Center of Integrated Nanomechanical Systems (COINS), visit mint.physics.berkeley.edu/coins/

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science.

Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Microfluidics/Nanofluidics

Nanoscale assembly line August 29th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE