Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny Channels Carry Big Information

Schematic of a 2-nm nanochannel device, with two microchannels, ten nanochannels and four reservoirs. (Image courtesy of Chuanhua Duan)
Schematic of a 2-nm nanochannel device, with two microchannels, ten nanochannels and four reservoirs. (Image courtesy of Chuanhua Duan)

Abstract:
Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to fabricate nanochannels that are only two nanometers (2-nm) in size.

Tiny Channels Carry Big Information

Berkeley, CA | Posted on December 15th, 2010

They say it's the little things that count, and that certainly holds true for the channels in transmembrane proteins, which are small enough to allow ions or molecules of a certain size to pass through, while keeping out larger objects. Artificial fluidic nanochannels that mimic the capabilities of transmembrane proteins are highly prized for a number of advanced technologies. However, it has been difficult to make individual artificial channels of this size - until now.

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have been able to fabricate nanochannels that are only two nanometers (2-nm) in size, using standard semiconductor manufacturing processes. Already they've used these nanochannels to discover that fluid mechanics for passages this small are significantly different not only from bulk-sized channels, but even from channels that are merely 10 nanometers in size.

"We were able to study ion transport in our 2-nm nanochannels by measuring the time and concentration dependence of the ionic conductance," says Arun Majumdar, Director of DOE's Advanced Research Projects Agency - Energy (ARPA-E), who led this research while still a scientist at Berkeley Lab. "We observed a much higher rate of proton and ionic mobility in our confined hydrated channels - up to a fourfold increase over that in larger nanochannels (10-to-100 nm). This enhanced proton transport could explain the high throughput of protons in transmembrane channels."

Majumdar is the co-author with Chuanhua Duan, a member of Majumdar's research group at the University of California (UC) Berkeley, of a paper on this work, which was published in the journal Nature Nanotechnlogy. The paper is titled "Anomalous ion transport in 2-nm hydrophilic nanochannels."

In their paper, Majumdar and Duan describe a technique in which high-precision ion etching is combined with anodic bonding to fabricate channels of a specific size and geometry on a silicon-on-glass die. To prevent the channel from collapsing under the strong electrostatic forces of the anodic bonding process, a thick (500 nm) oxide layer was deposited onto the glass substrate.

"This deposition step and the following bonding step guaranteed successful channel sealing without collapsing," says Duan. "We also had to choose the right temperature, voltage and time period to ensure perfect bonding. I compare the process to cooking a steak, you need to choose the right seasoning as well as the right time and temperature. The deposition of the oxide layer was the right seasoning for us."

The nanometer-sized channels in transmembrane proteins are critical to controlling the flow of ions and molecules across the external and internal walls of a biological cell, which, in turn, are critical to many of the biological processes that sustain the cell. Like their biological counterparts, fluidic nanochannels could play critical roles in the future of fuel cells and batteries.

"Enhanced ion transport improves the power density and practical energy density of fuel cells and batteries," Duan says. "Although the theoretical energy density in fuel cells and batteries is determined by the active electrochemical materials, the practical energy density is always much lower because of internal energy loss and the usage of inactive components. Enhanced ion transport could reduce internal resistance in fuel cells and batteries, which would reduce the internal energy loss and increase the practical energy density."

The findings by Duan and Majumdar indicate that ion transport could be significantly enhanced in 2-nm hydrophilic nanostructures because of their geometrical confinements and high surface-charge densities. As an example, Duan cites the separator, the component placed between the between the cathode and the anode in batteries and fuel cells to prevent physical contact of the electrodes while enabling free ionic transport.

"Current separators are mostly microporous layers consisting of either a polymeric membrane or non-woven fabric mat," Duan says. "An inorganic membrane embedded with an array of 2-nm hydrophilic nanochannels could be used to replace current separators and improve practical power and energy density."

The 2-nm nanochannels also hold promise for biological applications because they have the potential to be used to directly control and manipulate physiological solutions. Current nanofluidic devices utilize channels that are 10-to-100 nm in size to separate and manipulate biomolecules. Because of problems with electrostatic interactions, these larger channels can function with artificial solutions but not with natural physiological solutions.

"For physiological solutions with typical ionic concentrations of approximately 100 millimolars, the Debye screening length is 1 nm," says Duan. "Since electrical double layers from two-channel surfaces overlap in our 2-nm nanochannels, all current biological applications found in larger nanochannels can be transferred to 2-nm nanochannels for real physiological media."

The next step for the researchers will be to study the transport of ions and molecules in hydrophilic nanotubes that are even smaller than 2-nm. Ion transport is expected to be even further enhanced by the smaller geometry and stronger hydration force.

"I am developing an inorganic membrane with embedded sub-2 nm hydrophilic nanotube array that will be used to study ion transport in both aqueous and organic electrolytes,' Duan says. "It will also be developed as a new type of separator for lithium-ion batteries."

This work was supported by DOE's Office of Science, plus the Center for Scalable and Integrated Nanomanufacturing, and the Center of Integrated Nanomechanical Systems at UC Berkeley.

Additional Information

For more information about the research of Arun Majumdar visit http://www.me.berkeley.edu/faculty/majumdar/

For more information about ARPA-E visit the Website at arpa-e.energy.gov/

For more information about the Center for Scalable and Integrated Nanomanufacturing (SINAM) visit www.sinam.org/

For more information about the Center of Integrated Nanomechanical Systems (COINS), visit mint.physics.berkeley.edu/coins/

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the DOE Office of Science.

Visit our Website at www.lbl.gov

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Microfluidics/Nanofluidics

Particle Works creates range of high performance quantum dots February 23rd, 2017

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

Fabrication of a Miniature Paper-Based Electroosmotic Actuator November 29th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Possible Futures

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Announcements

Gold standards for nanoparticles: Understanding how small organic ions stabilize gold nanoparticles may allow for better control March 29th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

Researchers uncover secret of nanomaterial that makes harvesting sunlight easier March 29th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Tweaking electrolyte makes better lithium-metal batteries: A pinch of electrolyte additive gives rechargeable battery stability, longer life March 2nd, 2017

Fuel Cells

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project