Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Canadian scientists identify a spontaneously chain-reacting molecule

Abstract:
A promising boost for nano-circuitry

Canadian scientists identify a spontaneously chain-reacting molecule

Toronto | Posted on December 13th, 2010

In the burgeoning field of nano-science there are now many ways of 'writing' molecular-scale messages on a surface, one molecule at a time. The trouble is that writing a molecule at a time takes a very long time.

"It is much better if the molecules can be persuaded to gather together and imprint an entire pattern simultaneously, by themselves. One such pattern is an indefinitely long line, which can then provide the basis for the ultimately thin molecular 'wire' required for nano-circuitry," says John Polanyi of the University of Toronto's Department of Chemistry, co- author of the paper to be published on Nature Chemistry this week.

The paper describes, for the first time, a simple molecule that each time it chemically reacts with a surface prepares a hospitable neighbouring site at which the next incoming molecule reacts. Accordingly, these molecules, when simply dosed (blindly) on the surface, spontaneously grow durable 'molecular-chains'. These molecular chains are the desired prototypes of nano-wires.

The experiments were conducted by graduate student Tingbin Lim in the John Polanyi Scanning Tunneling Microscopy laboratory at U of T, in conjunction with theory performed by postdoctoral fellow Dr. Wei Ji in the Hong Guo laboratory in the Department of Physics, McGill University. The experiments in Toronto yielded visual evidence of the chains, and the theory at McGill explained why the chains spontaneously grew.

"Early-on, far-sighted Xerox Research Centre Canada (XRCC) recognized this opportunity for imprinting patterns at the molecular scale, thereby persuading Ontario Centres of Excellence (OCE) and the federal Natural Sciences and Engineering Research Council (NSERC), through its Strategic Grant program, to fund the bulk of the research costs in our lab," says Polanyi.

"The experiments constituted the doctoral work of a recent PhD student in the Toronto laboratory, Dr. Tingbin Lim an outstanding student who came from Singapore to join our group and now makes his home as a scientist in Canada."

Dr. Wei Ji who did much of the calculations at McGill has returned to his native China where he has been appointed a full Professor. He remains in close collaborative touch with his colleagues at McGill and also in Toronto, to the benefit of all three locales.

The paper, entitled "Surface-mediated chain reaction through dissociative attachment" will be published on Nature Chemistry's website on December 12 at 1 pm Eastern time.

Authors are John C. Polanyi and Tingbin Lim of U of T's Department of Chemistry and Institute of Optical Science and Jong Guo and Wei Ji of the Centre for the Physics of Materials and the Department of Physics, McGill University.

The research was supported by the NSERC, Photonics Research Ontario (PRO), an Ontario Centre of Excellence (OCE), the Canadian Institute for Photonic Innovation (CIPI), the Xerox Research Centre Canada (XRCC), Fonds de Recherche sur la Nature et les Technologies (FQRNT) of Quebec and the Canadian Institute for Advanced Research (CIFAR).

####

For more information, please click here

Contacts:
Kim Luke

416-978-4352

Copyright © University of Toronto

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Introducing the multi-tasking nanoparticle: Versatile particles offer a wide variety of diagnostic and therapeutic applications August 26th, 2014

Scientists craft atomically seamless, thinnest-possible semiconductor junctions August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Nanoelectronics

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Symphony of nanoplasmonic and optical resonators leads to magnificent laser-like light emission August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE