Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study probes link between magnetism, superconductivity

Abstract:
US-European team revisits 30-year-old breakthrough with new methods, understanding

Study probes link between magnetism, superconductivity

Houston, TX | Posted on December 13th, 2010

European and U.S. physicists this week are offering up the strongest evidence yet that magnetism is the driving force behind unconventional superconductivity. The findings by researchers from Rice University, the Max Planck Institute for Chemical Physics of Solids (MPI-CPfS) in Dresden, Germany, and other institutions were published online today in Nature Physics.

The findings follow more than three decades of research by the team that discovered unconventional superconductivity in 1979. That breakthrough, which was led by MPI-CPfS Director Frank Steglich, preceded by seven years the more widely publicized discovery of unconventional superconductivity at high temperatures. In the latest study, the team revisited the same heavy-fermion material -- a mix of cerium, copper and silicon -- that was used in 1979, applying new experimental techniques and theoretical knowledge unavailable 30 years ago.

"In 1979, there was not much understanding of quantum criticality or of the collective way that electrons behave at the border of magnetism," said Rice physicist Qimiao Si, the lead theorist and co-author of the new paper. "Today, we know a great deal about such collective behavior in the regime where materials transition to a superconducting state. The question we examined in this study is, How does all of that new knowledge translate into an understanding of the superconducting state itself?"

Magnetism -- the phenomenon that drives compass needles and keeps notes stuck to refrigerators the world over -- arises when the electrons in a material are oriented in a particular way. Every electron is imbued with a property called spin, and electron spins are oriented either up or down. In most materials, the arrangement of electron spins is haphazard, but in everyday refrigerator magnets -- which scientists call ferromagnets -- electron spins are oriented collectively, in the same direction.

Classical superconductors, which were discovered almost a century ago, were the first materials known to conduct electrons without losing energy due to resistance. Electrons typically bump and ricochet from atom to atom as they travel down a wire, and this jostling leads to a loss of energy in the form of electrical resistance. Resistance costs the energy industry billions of dollars per year in lost power, so scientists have been keen to put superconducting wires to widespread use, but it hasn't been easy.

It took physicists almost 50 years to explain classical superconductivity: At extremely low temperatures, electrons pair up and move in unison, thus avoiding the jostling they experience by themselves. These electron twosomes are called Cooper pairs, and physicists began trying to explain how they form in unconventional superconductors as soon as Steglich's findings were published in 1979. Si said theorists studying the question have increasingly been drawn to the collective behavior of electrons, particularly at the border of magnetism -- the critical point where a material changes from one magnetic state to another.

In the new experiments, Steglich, the lead experimentalist co-author, and his group collaborated with physicists at the Jülich Centre for Neutron Science at the Institut Laue-Langevin in Grenoble, France, to bombard heavy fermion samples with neutrons. Because neutrons also have spin, those experiments allowed the team to probe the spin states of the electrons in the heavy fermions.

"Our neutron-scattering data provide convincing evidence that the cerium-based heavy fermion compound is located near a quantum critical point," said Oliver Stockert, a study co-author and a neutron-scattering specialist from MPI-CPfS. "Moreover, the data revealed how the magnetic spectrum changes as the material turns into a superconductor."

From the data, Si and co-author Stefan Kirchner, a theorist from the Max Planck Institute for the Physics of Complex Systems and a former postdoctoral fellow at Rice, determined the amount of magnetic energy that was saved when the system entered the superconducting state.

"We have calculated that the saved magnetic energy is more than 10 times what is needed for the formation of the Cooper pairs," Kirchner said.

"Why the magnetic exchange in the superconductor yields such a large energy saving is a new and intriguing question," said Si, Rice's Harry C. and Olga K. Wiess Professor of Physics and Astronomy. He said one possible origin is the electronic phenomenon known as the "Kondo effect," which is involved in a class of unconventional quantum critical points advanced by Si and colleagues in a theoretical paper published in Nature in 2001. Regardless of the final answer, Si said the present study already constitutes a definitive proof that "collective fluctuations of the electrons at the border of magnetism are capable of driving superconductivity."

Si and Steglich found it remarkable that the notion of quantum criticality is providing fresh insights into the workings of the very first unconventional superconductor ever discovered. At the same time, both said more studies are needed to determine the precise way that quantum-critical fluctuations give rise to heavy-fermion superconductivity. And thanks to key differences between the heavy-fermion materials and high-temperature superconductors, additional work must be done to determine whether the same findings apply to both.

"We are certain that we are on the right track with our investigations, however," Steglich said.

The research was facilitated by the International Collaborative Center on Quantum Matter, a collaborative entity formed by Rice, MPI-CPfS, China's Zhejiang University and the London Centre for Nanotechnology. Research support was provided by the German Research Foundation, the National Science Foundation and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project