Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Platinum-coated nanoparticles could power fuel cell cars

Atomic resolution images of the palladium-cobalt nanoparticle, before platinum deposition. Muller Lab
Atomic resolution images of the palladium-cobalt nanoparticle, before platinum deposition. Muller Lab

Abstract:
Fuel cells may power the cars of the future, but it's not enough to just make them work -- they have to be affordable. Cornell researchers have developed a novel way to synthesize a fuel cell electrocatalytic material without breaking the bank.

By Anne Ju

Platinum-coated nanoparticles could power fuel cell cars

Ithaca, NY | Posted on December 9th, 2010

The research, published online Nov. 24 in the Journal of the American Chemical Society, describes a simple method for making nanoparticles that drive the electrocatalytic reactions inside room-temperature fuel cells.

Fuel cells convert chemical energy directly into electrical energy. They consist of an anode, which oxidizes the fuel (such as hydrogen), and a cathode, which reduces oxygen to water. A polymer membrane separates the electrodes. Fuel cell-powered cars in production today use pure platinum to catalyze the oxygen reduction reaction in the cathode side. While platinum is the most efficient catalyst available today for the oxygen reduction reaction, its activity is limited, and it is rare and expensive.

The Cornell researchers' nanoparticles offer an alternative to pure platinum at a fraction of the cost. They are made of a palladium and cobalt core and coated with a one-atom-thick layer of platinum. Palladium, though not as good a catalyst, has similar properties as platinum (it is in the same group on the Periodic Table of Elements; it has the same crystal structure; and it is similar in atomic size), but it costs one-third less and is 50 times more abundant on Earth.

Researchers led by Héctor D. Abruña, the E.M. Chamot Profesor of Chemistry and Chemical Biology, made the nanoparticles on a carbon substrate and made the palladium-cobalt core self-assemble -- cutting down on manufacturing costs. First author Deli Wang, a postdoctoral associate in Abruña's lab, designed the experiments and synthesized the nanoparticles.

David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, led the efforts geared at imaging the particles down to atomic resolution to demonstrate their chemical composition and distribution, and to prove the efficacy of the catalytic conversions.

"The crystal structure of the substrate, composition and spatial distribution of the nanoparticles play important roles in determining how well the platinum performs," said Huolin Xin, a graduate student in Muller's lab.

The work was supported by the Energy Materials Center at Cornell, a Department of Energy-supported Energy Frontiers Research Center. Researchers also used equipment at the Cornell Center for Materials Research.

####

For more information, please click here

Contacts:
Media Contact:
Joe Schwartz
(607) 254-6235


Cornell Chronicle:
Anne Ju
(607) 255-9735

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project