Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular "stencils" open up new possibilities for solar energy

Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)
Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)

Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have begun to use molecular "stencils" to pave the way to new materials that could potentially find their way into future generations of solar cells, catalysts and photonic crystals.

By Jared Sagoff

Molecular "stencils" open up new possibilities for solar energy

Argonne, IL | Posted on December 8th, 2010

Researchers at Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a technique known as sequential infiltration synthesis (SIS), which relies on the creation of self-assembled nanoscale chemical domains into which other materials can be grown. In this technique, a film composed of large molecules called block copolymers acts as a template for the creation of a highly-tunable patterned material.

This new method represents an extension of atomic layer deposition (ALD), a popular technique for materials synthesis that is routinely used by Argonne scientists. Instead of just layering two-dimensional films of different nanomaterials on top of one another, however, SIS allows scientists to construct materials that have much more complex geometries.

"This new technique allows us to create materials that just weren't possible with ALD or block copolymers alone," said Seth Darling, an Argonne nanoscientist who helped to develop SIS in collaboration with Argonne chemist Jeff Elam. "Having the ability to control the geometry of the material we're making as well as its chemical composition opens the door to a whole universe of new materials."

According to Darling, the success of the technique relies on the unique chemistry of block copolymers. Every block copolymer is composed of two chemically distinct subunits; for instance, one subunit might have an affinity for water while the other might repel water. In such a case, like would seek out like, creating a heterogeneous matrix of interspersed homogenous regions.

"You can think of a block copolymer as like a pair of molecular conjoined twins where one likes to talk and one likes to read quietly," Darling said. "If you put a bunch of these twins together in a room, the talkative ones are going to try to be near the talkative ones and the readers are going to try to be near the readers, but they can't simply all separate themselves to either side of the room, and it's this action that gives us the geometries we're looking for."

Depending on the initial substrate, the block copolymers, and the processing that materials scientists use, regions can form that have many different shapes, from spherical to cylindrical to planar. While there are many types of block copolymers, in general they cannot serve as wide an array of purposes as inorganic materials. The challenge, according to Darling, is to bring the self-assembly of block copolymers together with the functionality of inorganic materials.

The physical and chemical properties of a material generated using SIS depend on how block copolymer chemistry and morphology interact with the chemistry of ALD techniques. "We can tailor our materials synthesis efforts in a much more precise way than we ever could before," Darling said.

Darling and Elam have spent most of their careers at Argonne focused on the development of new types of materials, including the development of solar cells that combine organic and inorganic components. They believe that the types of materials that SIS can generate will drive fundamental solar energy technologies to greater efficiencies and lower cost.

"Our solar energy future does not have a one-size-fits-all solution," Elam said. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers like us many new routes of attack."

The Center for Nanoscale Materials is supported by the U.S. Department of Energy's Office of Basic Energy Sciences (BES). This work was supported in part by the Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center also supported by BES.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chemistry

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Nanotechnology Used to Produce Ceramic Membrane with High Thermal Stability January 19th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Self Assembly

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Energy

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Photonics/Optics/Lasers

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE