Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular "stencils" open up new possibilities for solar energy

Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)
Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)

Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have begun to use molecular "stencils" to pave the way to new materials that could potentially find their way into future generations of solar cells, catalysts and photonic crystals.

By Jared Sagoff

Molecular "stencils" open up new possibilities for solar energy

Argonne, IL | Posted on December 8th, 2010

Researchers at Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a technique known as sequential infiltration synthesis (SIS), which relies on the creation of self-assembled nanoscale chemical domains into which other materials can be grown. In this technique, a film composed of large molecules called block copolymers acts as a template for the creation of a highly-tunable patterned material.

This new method represents an extension of atomic layer deposition (ALD), a popular technique for materials synthesis that is routinely used by Argonne scientists. Instead of just layering two-dimensional films of different nanomaterials on top of one another, however, SIS allows scientists to construct materials that have much more complex geometries.

"This new technique allows us to create materials that just weren't possible with ALD or block copolymers alone," said Seth Darling, an Argonne nanoscientist who helped to develop SIS in collaboration with Argonne chemist Jeff Elam. "Having the ability to control the geometry of the material we're making as well as its chemical composition opens the door to a whole universe of new materials."

According to Darling, the success of the technique relies on the unique chemistry of block copolymers. Every block copolymer is composed of two chemically distinct subunits; for instance, one subunit might have an affinity for water while the other might repel water. In such a case, like would seek out like, creating a heterogeneous matrix of interspersed homogenous regions.

"You can think of a block copolymer as like a pair of molecular conjoined twins where one likes to talk and one likes to read quietly," Darling said. "If you put a bunch of these twins together in a room, the talkative ones are going to try to be near the talkative ones and the readers are going to try to be near the readers, but they can't simply all separate themselves to either side of the room, and it's this action that gives us the geometries we're looking for."

Depending on the initial substrate, the block copolymers, and the processing that materials scientists use, regions can form that have many different shapes, from spherical to cylindrical to planar. While there are many types of block copolymers, in general they cannot serve as wide an array of purposes as inorganic materials. The challenge, according to Darling, is to bring the self-assembly of block copolymers together with the functionality of inorganic materials.

The physical and chemical properties of a material generated using SIS depend on how block copolymer chemistry and morphology interact with the chemistry of ALD techniques. "We can tailor our materials synthesis efforts in a much more precise way than we ever could before," Darling said.

Darling and Elam have spent most of their careers at Argonne focused on the development of new types of materials, including the development of solar cells that combine organic and inorganic components. They believe that the types of materials that SIS can generate will drive fundamental solar energy technologies to greater efficiencies and lower cost.

"Our solar energy future does not have a one-size-fits-all solution," Elam said. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers like us many new routes of attack."

The Center for Nanoscale Materials is supported by the U.S. Department of Energy's Office of Basic Energy Sciences (BES). This work was supported in part by the Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center also supported by BES.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Photonics/Optics/Lasers

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Optical nanoantennas set the stage for a NEMS lab-on-a-chip revolution February 24th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE