Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular "stencils" open up new possibilities for solar energy

Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)
Polymer Art Glass -- An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. These materials are being explored for use in the low-cost fabrication of various nanoscale dot, post and wire arrays. By Seth Darling and Muruganathan Ramanathan (Argonne National Laboratory)

Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have begun to use molecular "stencils" to pave the way to new materials that could potentially find their way into future generations of solar cells, catalysts and photonic crystals.

By Jared Sagoff

Molecular "stencils" open up new possibilities for solar energy

Argonne, IL | Posted on December 8th, 2010

Researchers at Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a technique known as sequential infiltration synthesis (SIS), which relies on the creation of self-assembled nanoscale chemical domains into which other materials can be grown. In this technique, a film composed of large molecules called block copolymers acts as a template for the creation of a highly-tunable patterned material.

This new method represents an extension of atomic layer deposition (ALD), a popular technique for materials synthesis that is routinely used by Argonne scientists. Instead of just layering two-dimensional films of different nanomaterials on top of one another, however, SIS allows scientists to construct materials that have much more complex geometries.

"This new technique allows us to create materials that just weren't possible with ALD or block copolymers alone," said Seth Darling, an Argonne nanoscientist who helped to develop SIS in collaboration with Argonne chemist Jeff Elam. "Having the ability to control the geometry of the material we're making as well as its chemical composition opens the door to a whole universe of new materials."

According to Darling, the success of the technique relies on the unique chemistry of block copolymers. Every block copolymer is composed of two chemically distinct subunits; for instance, one subunit might have an affinity for water while the other might repel water. In such a case, like would seek out like, creating a heterogeneous matrix of interspersed homogenous regions.

"You can think of a block copolymer as like a pair of molecular conjoined twins where one likes to talk and one likes to read quietly," Darling said. "If you put a bunch of these twins together in a room, the talkative ones are going to try to be near the talkative ones and the readers are going to try to be near the readers, but they can't simply all separate themselves to either side of the room, and it's this action that gives us the geometries we're looking for."

Depending on the initial substrate, the block copolymers, and the processing that materials scientists use, regions can form that have many different shapes, from spherical to cylindrical to planar. While there are many types of block copolymers, in general they cannot serve as wide an array of purposes as inorganic materials. The challenge, according to Darling, is to bring the self-assembly of block copolymers together with the functionality of inorganic materials.

The physical and chemical properties of a material generated using SIS depend on how block copolymer chemistry and morphology interact with the chemistry of ALD techniques. "We can tailor our materials synthesis efforts in a much more precise way than we ever could before," Darling said.

Darling and Elam have spent most of their careers at Argonne focused on the development of new types of materials, including the development of solar cells that combine organic and inorganic components. They believe that the types of materials that SIS can generate will drive fundamental solar energy technologies to greater efficiencies and lower cost.

"Our solar energy future does not have a one-size-fits-all solution," Elam said. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers like us many new routes of attack."

The Center for Nanoscale Materials is supported by the U.S. Department of Energy's Office of Basic Energy Sciences (BES). This work was supported in part by the Argonne-Northwestern Solar Energy Research Center, an Energy Frontier Research Center also supported by BES.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Chemistry

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Nanosorbent Produced in Iran to Adsorb Tiny Amounts of Aromatic Hydrocarbon from Seawater May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Self Assembly

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

Announcements

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price – Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Energy

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project