Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Writing with a Nanoquill

Pen-pushing: Direct-write dip-pen nanolithography (DPN) using a tip coated with nanoporous poly(2-methyl-2-oxazoline) allows the creation of precise patterns of large-sized biomaterials such as viruses. The hydrogel tip absorbs the virus-containing ink solution and atomic force microscopy is used to transport it to a surface. Credit Angewandte Chemie
Pen-pushing: Direct-write dip-pen nanolithography (DPN) using a tip coated with nanoporous poly(2-methyl-2-oxazoline) allows the creation of precise patterns of large-sized biomaterials such as viruses. The hydrogel tip absorbs the virus-containing ink solution and atomic force microscopy is used to transport it to a surface. Credit Angewandte Chemie

Abstract:
Dip-pen nanolithography with a porous tip generates nanopatterns with viruses

Writing with a Nanoquill

Weinheim, Germany | Posted on December 8th, 2010

One process used to produce nanoscopic structures like ever-smaller integrated circuits, biosensors, and gene chips is known as dip-pen nanolithography, in which the nanotip of an atomic force microscope is used to "write" a pattern directly on a substrate. In the journal Angewandte Chemie, a Korean research team led by Jung-Hyurk Lim at Chungju National University in Chungju have now introduced a refined nanotip for this technique. With their "nanoquill", it is possible to produce complex nanopatterns from large biomolecules—such as complete virus particles—rapidly, precisely, and flexibly.

Atomic force microscopy, originally designed for the determination of the nanoscopic structures of surfaces, has since been very successfully put to another use: In dip-pen nanolithography, the nanotip is dipped like a quill into an "ink well" and the molecules are then deposited like ink onto a suitable substrate to form complex nanopatterns. Critical to this process is a tiny water meniscus that forms between the surface to be written on and the nanotip; the meniscus provides a pathway by which the molecules in the ink—DNA, peptides, or proteins—can move to the surface. However, larger molecules cannot diffuse through the meniscus and cannot be deposited on the surface. Thanks to a novel nanotip, the Korean scientists have now overcome this limitation. The new tip is made of silicon dioxide that has been coated with a well-characterized biocompatible polymer. This forms a nanoporous polymer network with pore diameters between 50 and several hundred nanometers.

When this tip is dipped into a solution containing biomolecules, the polymer absorbs the liquid and swells into a gel. When the loaded "nanoquill" comes into contact with an amine-coated substrate, the biomolecules diffuse out of the gel onto the surface. Because diffusion from the gel onto the surface encounters less resistance than diffusion through a water meniscus, it is possible to deposit much larger biomolecules than in the conventional method.

As a demonstration, the researchers selected virus particles bound to a fluorescence dye as their ink. They were able to use this to produce patterns with more than 1000 individual nanodots without having to refill the quill. Unlike the conventional technique, increasing contact time between the surface and the tip of the quill increases the number of individual viruses within the dot, but not its diameter. However, the researchers were able to generate dots of various sizes (400, 200, and 80 nm) by varying the diameter of the tip. This variation can be quite easily controlled by the duration of the polymerization reaction.

(2761 characters)

Author: Jung-Hyurk Lim, Chungju National University (Rep. Korea),

Title: Polymer-Coated Tips for Patterning of Viruses by Dip-Pen Nanolithography

Angewandte Chemie International Edition 2010, 49, No. 50, 9689-9692, Permalink to the article: dx.doi.org/10.1002/anie.201004654

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Announcements

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Nanobiotechnology

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE