Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The next generation of motion sensors

Abstract:
Researchers at the University of Cambridge have developed a new concept in motion sensing technology that is one thousand times more sensitive than existing systems, such as those used in applications ranging from aerospace to home entertainment.

The next generation of motion sensors

UK | Posted on December 7th, 2010

The new technology, developed by Dr Ashwin Seshia's research group at the University's Nanoscience Centre, relies on tracking the deviations between the relative amplitudes of coupled vibratory devices to enhance the sensitivity of microscopic inertial sensors.

Inertial sensors are in wide use today for a variety of motion sensing applications, and can be found in devices from smartphones to fighter jets. The sensors measure changes in acceleration or provide information about angular motion.

While the inertial sensors used in many applications are large and expensive, miniaturised versions of the devices based on micro-electro-mechanical system (MEMS) technology are becoming more commonplace, due to the substantial reductions in cost, size and power consumption they provide. However, the sensitivities achievable in these devices are still lower than those required for applications where high performance is essential, such as navigation, healthcare and gaming.

The method developed by Seshia and his research group addresses one of the perennial challenges associated with good sensor design: maximising sensitivity to the quantity which is being measured, while minimising sensitivity to environmental variables such as temperature and pressure.

"The technology developed by Ashwin and his team has enormous potential to completely change what we can do with inertial sensing across a huge variety of applications," said Dr Andrea Cantone of Cambridge Enterprise, the University's commercialisation group. "MEMS technology has enabled motion sensing to be incorporated into many devices already, but these improvements mean that they could be used in ways that haven't even been considered yet."

A working prototype has been constructed, and with a suitable partner, the sensors could reach the market within six months.

The technology will be showcased at Technology World 2010, taking place this week (7-8 December) at the ExCel Centre, London.

####

About Cambridge Enterprise Limited
Cambridge Enterprise Limited is a wholly owned subsidiary of the University of Cambridge, responsible for the commercialisation of University intellectual property. Activities include management and licensing of intellectual property and patents, proof of concept funding and support for University staff and research groups wishing to provide expert advice or facilities to public and private sector organisations. Cambridge Enterprise provides access to angel and early stage capital through the Cambridge Enterprise Seed Funds and Cambridge Enterprise Venture Partners, and offers business planning, mentoring, and other related programmes. Over the past three years, income from licensing, consultancy and equity transactions exceeded £27 million, of which £22 million represents distributions to University departments and academics.

For more information, please click here

Contacts:
Sarah Collins
Marketing Manager
Cambridge Enterprise Limited
Tel: +44 (0)1223 760339
Mob : +44 (0)7500 883612

Copyright © Cambridge Enterprise Limited

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

NEMS

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Possible Futures

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Announcements

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Events/Classes

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project