Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Singapore Consortium Learns from Nature to Produce New Chemical-free, Anti-bacteria Plastic 'Skins'

Abstract:
Taking a leaf from animals like dolphins and pilot whales that are known to have anti-fouling skins, researchers from A*STAR's Industrial Consortium On Nanoimprint (ICON) are using nanotechnology to create synthetic, chemical-free, anti-bacterial surfaces.

Singapore Consortium Learns from Nature to Produce New Chemical-free, Anti-bacteria Plastic 'Skins'

Singapore | Posted on December 6th, 2010

The surfaces can reduce infections caused by pathogens such as S. aureus and E. coli and can be used on common plastics, medical devices, lenses and even ship hulls. Conventional methods for preventing bacterial surface attachment may use potentially harmful metal ions, nanoparticles, chemicals or UV-radiation.

Nanoimprint technology, a form of nanotechnology, is a simple technique that has been developed by IMRE to make complex nanometer-sized patterns on surfaces to mimic the texture of natural surfaces. This gives the engineered material 'natural' properties such as luminescence, adhesiveness, water-proofing and anti-reflectivity.

The anti-bacterial surfaces research is ICON's second industry-themed project and will involve A*STAR's Institute of Materials Research and Engineering (IMRE) and companies like Nypro Inc (USA), Hoya Corporation (Japan), Advanced Technologies and Regenerative Medicine, LLC (ATRM) (USA), NIL Technology ApS (Denmark) and Akzo Nobel (UK). This is also the first time that 3 local polytechnics, namely Singapore Polytechnic, Temasek Polytechnic and Ngee Ann Polytechnic are working with the consortium partners, under a special arrangement.

"With millions of years of experience behind her, nature has produced some of the most rugged, adaptable life forms. Who better to learn engineering from than Mother Nature?" said Dr Low Hong Yee, IMRE's Director for Research and Innovation and head of the consortium. She added that the anti-microbial surfaces project will demonstrate the versatility of nanoimprinting technology and its benefits to a wide range of industries.

"The strong support given by industry to this second project and to the consortium is a resounding seal of approval of the research, the talent expertise, the technology and its real-world applications", said Prof Andy Hor, Executive Director of IMRE.

Dr Raj Thampuran, A*STAR Science and Engineering Research Council's (SERC) Executive Director added, "Working closely with companies ensures that our R&D and expertise is translated at the earliest possible time and contributes value to the economy. Borrowing intimately from characteristics in nature represents some of the most frontier and innovative ideas in science and engineering. I am pleased that IMRE's research will help companies challenge difficult engineering problems."

"ICON and nanoimprint research gives our own R&D an added dimension and provides us with alternative options on how our existing technology can be applied," said Mr Steve Ferriday, Technical Manager, Worldwide Marine Foul Release, International Paint Ltd (UK), which is part of Akzo Nobel, the world's largest global paints and coatings company. The company recently established their worldwide marine research laboratory in Singapore and is keen to explore how these surfaces might work in a marine environment.

"Chemical additives in biomedical devices can adversely affect different users in different ways. The anti-microbial surfaces derived from nanoimprint technology without the need for additional chemicals and coatings may offer us an alternative solution to this issue," said Mr Tsuyoshi Watanabe, General Manager, R&D Center of Hoya Corporation, a Japanese-based company dealing in advanced electronics and optics technologies. The company has a plant in Singapore producing implanted lenses for the eye.

"Nypro is excited to be a part of this second project. Our participation in such a world class collaborative programme gives Nypro a competitive advantage in bringing innovation to our customers," commented Mr Michael McGee, Director of Technology from Nypro Inc., a leading global solutions provider in the field of manufactured precision plastic products.

"This collaboration will enable the R&D partners to leverage on their areas of expertise to investigate how bacteria attach to specially designed surfaces of different materials. The industrial applications are tremendous and Ngee Ann Polytechnic is excited to be part of the team. Our student interns from various courses at the School of Life Sciences & Chemical Technology will also benefit from working on projects under the supervision of top researchers," said Mrs Tang-Lim Guek Im, Senior Director for Technology Collaboration at Ngee Ann Polytechnic, Singapore.

####

About A*STAR
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and nine consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners. For more information about A*STAR, please visit www.a-star.edu.sg.

About the Institute of Materials Research and Engineering (IMRE)
Established in September 1997, IMRE has built strong capabilities in materials analysis, characterisation, materials growth, patterning, fabrication, synthesis and integration. IMRE is an institute of talented researchers equipped with state-of-the-art facilities such as the SERC Nanofabrication and Characterisation Facility to conduct world-class materials science research. Leveraging on these capabilities, R&D programmes have been established in collaboration with industry partners. These include research on organic solar cells, nanocomposites, flexible organic light-emitting diodes (OLEDs), solid-state lighting, nanoimprinting, microfluidics and next generation atomic scale interconnect technology.

For more information about IMRE, please visit www.imre.a-star.edu.sg

For more information, please click here

Contacts:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235


For technical, business and membership enquiries, please contact:

Dr Low Hong Yee (Chair, ICON)
Senior Scientist
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8133


Dr Karen Chong (project on anti-bacteria surfaces)
Senior Research Engineer
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8426


Mr Rick Ong
Industry Development Manager
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6513 1198

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Marine/Watercraft

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Products

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

CAP-XX Launches 0.6mm Thinline Supercapacitors for Designing Wearable, Ultra-Portable and Connected IoT Devices: Eliminated Materials and Changed Processes to Reduce Thickness and Costs to Below $1 May 19th, 2015

Iran Unveils 6 Knowledge-Based Products April 11th, 2015

Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project