Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Light touch brightens nanotubes

Single-walled carbon nanotubes treated with ozone incorporate oxygen atoms that shift and intensify the nanotubes' near-infrared fluorescence emission. The discovery by Rice University scientists should lead to new uses of nanotubes in biomedicine and materials science. (Credit: Bruce Weisman/Rice University)
Single-walled carbon nanotubes treated with ozone incorporate oxygen atoms that shift and intensify the nanotubes' near-infrared fluorescence emission. The discovery by Rice University scientists should lead to new uses of nanotubes in biomedicine and materials science. (Credit: Bruce Weisman/Rice University)

Abstract:
Rice University scientists find a little ozone goes a long way for fluorescence

Light touch brightens nanotubes

Houston, TX | Posted on December 2nd, 2010

Rice University researchers have discovered a simple way to make carbon nanotubes shine brighter.

The Rice lab of researcher Bruce Weisman, a pioneer in nanotube spectroscopy, found that adding tiny amounts of ozone to batches of single-walled carbon nanotubes and exposing them to light decorates all the nanotubes with oxygen atoms and systematically changes their near-infrared fluorescence.

Chemical reactions on nanotube surfaces generally kill their limited natural fluorescence, Weisman said. But the new process actually enhances the intensity and shifts the wavelength.

He expects the breakthrough, reported online in the journal Science, to expand opportunities for biological and material uses of nanotubes, from the ability to track them in single cells to novel lasers.

Best of all, the process of making these bright nanotubes is incredibly easy -- "simple enough for a physical chemist to do," said Weisman, a physical chemist himself.

He and primary author Saunab Ghosh, a graduate student in his lab, discovered that a light touch was key. "We're not the first people to study the effects of ozone reacting with nanotubes," Weisman said. "That's been done for a number of years.

"But all the prior researchers used a heavy hand, with a lot of ozone exposure. When you do that, you destroy the favorable optical characteristics of the nanotube. It basically turns off the fluorescence. In our work we only add about one oxygen atom for 2,000-3,000 carbon atoms, a very tiny fraction."

Ghosh and Weisman started with a suspension of nanotubes in water and added small amounts of gaseous or dissolved ozone. Then they exposed the sample to light. Even light from a plain desk lamp would do, they reported.

Most sections of the doped nanotubes remain pristine and absorb infrared light normally, forming excitons, quasiparticles that tend to hop back and forth along the tube -- until they encounter oxygen.

"An exciton can explore tens of thousands of carbon atoms during its lifetime," Weisman said. "The idea is that it can hop around enough to find one of these doping sites, and when it does, it tends to stay there, because it's energetically stable. It becomes trapped and emits light at a longer (red-shifted) wavelength.

"Essentially, most of the nanotube is turning into an antenna that absorbs light energy and funnels it to the doping site. We can make nanotubes in which 80 to 90 percent of the emission comes from doped sites," he said.

Lab tests found the doped nanotubes' fluorescent properties to be stable for months.

Weisman said treated nanotubes could be detected without using visible light. "Why does that matter? In biological detection, any time you excite at visible wavelengths, there's a little bit of background emission from the cells and from the tissues. By exciting instead in the infrared, we get rid of that problem," he said.

The researchers tested their ability to view doped nanotubes in a biological environment by adding them to cultures of human uterine adenocarcinoma cells. Later, images of the cells excited in the near-infrared showed single nanotubes shining brightly, whereas the same sample excited with visible light displayed a background haze that made the tubes much more difficult to spot.

His lab is refining the process of doping nanotubes, and Weisman has no doubt about their research potential. "There are many interesting scientific avenues to pursue," he said. "And if you want to see a single tube inside a cell, this is the best way to do it. The doped tubes can also be used for biodistribution studies.

"The nice thing is, this isn't an expensive or elaborate process," Weisman said. "Some reactions require days of work in the lab and transform only a small fraction of your starting material. But with this process, you can convert an entire nanotube sample very quickly."

The paper's co-authors include Rice research scientist Sergei Bachilo, research technician Rebecca Simonette and Kathleen Beckingham, a Rice professor of biochemistry and cell biology.

The National Science Foundation, the Welch Foundation and NASA supported the research.

Read the abstract at www.sciencemag.org/content/early/2010/11/24/science.1196382.abstract

An animation is available at www.youtube.com/watch?v=iVM_5ktGtnw

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Mass spectrometers with optimised hydrogen pumping March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Nanomedicine

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Discoveries

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE