Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Light touch brightens nanotubes

Single-walled carbon nanotubes treated with ozone incorporate oxygen atoms that shift and intensify the nanotubes' near-infrared fluorescence emission. The discovery by Rice University scientists should lead to new uses of nanotubes in biomedicine and materials science. (Credit: Bruce Weisman/Rice University)
Single-walled carbon nanotubes treated with ozone incorporate oxygen atoms that shift and intensify the nanotubes' near-infrared fluorescence emission. The discovery by Rice University scientists should lead to new uses of nanotubes in biomedicine and materials science. (Credit: Bruce Weisman/Rice University)

Abstract:
Rice University scientists find a little ozone goes a long way for fluorescence

Light touch brightens nanotubes

Houston, TX | Posted on December 2nd, 2010

Rice University researchers have discovered a simple way to make carbon nanotubes shine brighter.

The Rice lab of researcher Bruce Weisman, a pioneer in nanotube spectroscopy, found that adding tiny amounts of ozone to batches of single-walled carbon nanotubes and exposing them to light decorates all the nanotubes with oxygen atoms and systematically changes their near-infrared fluorescence.

Chemical reactions on nanotube surfaces generally kill their limited natural fluorescence, Weisman said. But the new process actually enhances the intensity and shifts the wavelength.

He expects the breakthrough, reported online in the journal Science, to expand opportunities for biological and material uses of nanotubes, from the ability to track them in single cells to novel lasers.

Best of all, the process of making these bright nanotubes is incredibly easy -- "simple enough for a physical chemist to do," said Weisman, a physical chemist himself.

He and primary author Saunab Ghosh, a graduate student in his lab, discovered that a light touch was key. "We're not the first people to study the effects of ozone reacting with nanotubes," Weisman said. "That's been done for a number of years.

"But all the prior researchers used a heavy hand, with a lot of ozone exposure. When you do that, you destroy the favorable optical characteristics of the nanotube. It basically turns off the fluorescence. In our work we only add about one oxygen atom for 2,000-3,000 carbon atoms, a very tiny fraction."

Ghosh and Weisman started with a suspension of nanotubes in water and added small amounts of gaseous or dissolved ozone. Then they exposed the sample to light. Even light from a plain desk lamp would do, they reported.

Most sections of the doped nanotubes remain pristine and absorb infrared light normally, forming excitons, quasiparticles that tend to hop back and forth along the tube -- until they encounter oxygen.

"An exciton can explore tens of thousands of carbon atoms during its lifetime," Weisman said. "The idea is that it can hop around enough to find one of these doping sites, and when it does, it tends to stay there, because it's energetically stable. It becomes trapped and emits light at a longer (red-shifted) wavelength.

"Essentially, most of the nanotube is turning into an antenna that absorbs light energy and funnels it to the doping site. We can make nanotubes in which 80 to 90 percent of the emission comes from doped sites," he said.

Lab tests found the doped nanotubes' fluorescent properties to be stable for months.

Weisman said treated nanotubes could be detected without using visible light. "Why does that matter? In biological detection, any time you excite at visible wavelengths, there's a little bit of background emission from the cells and from the tissues. By exciting instead in the infrared, we get rid of that problem," he said.

The researchers tested their ability to view doped nanotubes in a biological environment by adding them to cultures of human uterine adenocarcinoma cells. Later, images of the cells excited in the near-infrared showed single nanotubes shining brightly, whereas the same sample excited with visible light displayed a background haze that made the tubes much more difficult to spot.

His lab is refining the process of doping nanotubes, and Weisman has no doubt about their research potential. "There are many interesting scientific avenues to pursue," he said. "And if you want to see a single tube inside a cell, this is the best way to do it. The doped tubes can also be used for biodistribution studies.

"The nice thing is, this isn't an expensive or elaborate process," Weisman said. "Some reactions require days of work in the lab and transform only a small fraction of your starting material. But with this process, you can convert an entire nanotube sample very quickly."

The paper's co-authors include Rice research scientist Sergei Bachilo, research technician Rebecca Simonette and Kathleen Beckingham, a Rice professor of biochemistry and cell biology.

The National Science Foundation, the Welch Foundation and NASA supported the research.

Read the abstract at www.sciencemag.org/content/early/2010/11/24/science.1196382.abstract

An animation is available at www.youtube.com/watch?v=iVM_5ktGtnw

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Nanomedicine

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Discoveries

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE